Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez, Ariel

dc.date.available
2021-12-02T17:56:39Z
dc.date.issued
2020-02-18
dc.identifier.citation
Fernandez, Ariel; Artificial Intelligence Steering Molecular Therapy in the Absence of Information on Target Structure and Regulation; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 18-2-2020; 460-466
dc.identifier.issn
1549-9596
dc.identifier.uri
http://hdl.handle.net/11336/147985
dc.description.abstract
Protein associations are at the core of biological activity, and the drug-based disruption of dysfunctional associations poses a major challenge to targeted therapy. The problem becomes daunting when the structure and regulated modulation of the complex are unknown. To address the challenge, we leverage an artificial intelligence platform that learns from structural and epistructural data and infers regulation-susceptible regions that also generate interfacial tension between protein and water, thereby promoting protein associations. The input consists of sequence-derived 1D-features. The network is configured with evolutionarily coupled residues and taught to search for phosphorylation-modulated binding epitopes. The discovery platform is benchmarked against a PDB-derived testing set and validated against experimental data on a therapeutic disruptor designed according to the inferred epitope for a large deregulated complex known to be recruited in heart failure. Thus, dysfunctional "molecular brakes" of cardiac contractility get released through a therapeutic intervention guided by artificial intelligence.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Biophysics
dc.subject
Artificial Intelligence
dc.subject
Structural Biology
dc.subject.classification
Física Atómica, Molecular y Química

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Artificial Intelligence Steering Molecular Therapy in the Absence of Information on Target Structure and Regulation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-02-18T15:44:29Z
dc.journal.volume
60
dc.journal.number
2
dc.journal.pagination
460-466
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Washington D. C.
dc.description.fil
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.journal.title
Journal of Chemical Information and Modeling

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jcim.9b00651
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jcim.9b00651
Archivos asociados