Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial Intelligence Steering Molecular Therapy in the Absence of Information on Target Structure and Regulation

Fernandez, ArielIcon
Fecha de publicación: 18/02/2020
Editorial: American Chemical Society
Revista: Journal of Chemical Information and Modeling
ISSN: 1549-9596
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

Protein associations are at the core of biological activity, and the drug-based disruption of dysfunctional associations poses a major challenge to targeted therapy. The problem becomes daunting when the structure and regulated modulation of the complex are unknown. To address the challenge, we leverage an artificial intelligence platform that learns from structural and epistructural data and infers regulation-susceptible regions that also generate interfacial tension between protein and water, thereby promoting protein associations. The input consists of sequence-derived 1D-features. The network is configured with evolutionarily coupled residues and taught to search for phosphorylation-modulated binding epitopes. The discovery platform is benchmarked against a PDB-derived testing set and validated against experimental data on a therapeutic disruptor designed according to the inferred epitope for a large deregulated complex known to be recruited in heart failure. Thus, dysfunctional "molecular brakes" of cardiac contractility get released through a therapeutic intervention guided by artificial intelligence.
Palabras clave: Biophysics , Artificial Intelligence , Structural Biology
Ver el registro completo
 
Archivos asociados
Tamaño: 2.102Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/147985
DOI: http://dx.doi.org/10.1021/acs.jcim.9b00651
URL: https://pubs.acs.org/doi/10.1021/acs.jcim.9b00651
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Fernandez, Ariel; Artificial Intelligence Steering Molecular Therapy in the Absence of Information on Target Structure and Regulation; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 18-2-2020; 460-466
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES