Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting Depression: a comparative study of machine learning approaches based on language usage

Título: Prediciendo la depresión: un estudio comparativo de distintos enfoques de aprendizaje automático basado en el análisis del lenguaje;
Prognosticando a depressão: um estudo comparativo de diferentes enfoques da aprendizagem automática baseada na análise da linguagem
Mariñelarena-Dondena, LucianaIcon ; Ferretti, Edgardo; Maragoudakis, Manolis; Sapino, Maximiliano EmanuelIcon ; Errecalde, Marcelo Luis
Fecha de publicación: 12/2017
Editorial: Centro de Estudios Académicos en Neuropsicología
Revista: Cuadernos de Neuropsicología
e-ISSN: 0718-4123
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

 
Depression is a major public health concern and a leading cause of disability. Globally, more than 332 million people of all ages suffer from depression. Several studies in the literature show that people language usage is indicative of their psychological states. That is why, there is growing interest in the application of natural language processing techniques for predicting depression. In this current work, we present a comparative study of different machine learning methods and alternative ways of representing documents in order to automatically detect users who have reported to have been diagnosed with depression. The obtained results have demonstrated that a Deep Learning approach had the superior classification performance, when combined with a Synthetic Minority Oversampling Technique to deal with the problem of class imbalances in the dataset used in our experiments. The F1 score achieved was 82.93% with an accuracy of more than 94%.
 
La depresión es uno de los mayores problemas de salud pública que constituye a su vez una de las principales causas de incapacidad. A nivel mundial, más de 332 millones de personas de todas las edades padecen este trastorno. Investigaciones previas demuestran que el lenguaje que utilizan las personas refleja su salud mental. Por tal motivo, existe un creciente interés en la aplicación de técnicas de procesamiento del lenguaje natural para predecir la depresión. En este trabajo se presenta un estudio comparativo de diferentes métodos de aprendizaje automático como así también distintas maneras de representación de los documentos con el fin de detectar automáticamente a aquellos usuarios de medios sociales que manifestaron haber sido diagnosticados previamente con depresión. Los resultados obtenidos mostraron que la performance del clasificador mejoró considerablemente cuando se aplicó un enfoque de Aprendizaje Profundo combinándolo con el algoritmo SMOTE (Synthetic Minority Oversampling TEchnique) que permite hacer frente al problema de las clases desbalanceadas alcanzando así una medida F1 del 82.93%. En síntesis, este enfoque combinado, SMOTE + Aprendizaje Profundo, predice la depresión con una exactitud de más del 94%.
 
A depressão é um dos maiores problemas de saúde pública que constitui por sua vez uma das principais causas de incapacidade. A nível mundial, mais de 332 milhões de pessoas de todas as idades padecem deste transtorno. Investigações prévias demonstram que a linguagem que utilizam as pessoas refletem a sua saúde mental. Por tal motivo, existe um crescente interesse na aplicação de técnicas de processamento da linguagem natural para prognosticar a depressão. Neste trabalho se apresenta um estudo comparativo de diferentes métodos de aprendizagem automático como assim também distintas maneiras de representação dos documentos com a finalidade de detectar automaticamente àqueles usuários de meios sociais que manifestaram haver sido diagnosticados previamente com depressão. Os resultados obtidos mostraram que a performance do classificador melhorou consideravelmente quando se aplicou um enfoque de Aprendizagem Profunda combinando com o algoritmo SMOTE (Synthetic Minority Oversampling TEchnique) que permite fazer frente ao problema das classes desbalanceadas alcançando assim uma medida F1 del 82.93%. Em síntese, este enfoque combinado SMOTE + Aprendizagem Profundo prognostica a depressão com uma exatidão de mais de 94%.
 
Palabras clave: DEPRESSION , MACHINE LEARNING , DEEP LEARNING , SMOTE (SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE)
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 422.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/147208
URL: https://www.cnps.cl/index.php/cnps/article/view/297
DOI: http://dx.doi.org/10.7714/CNPS/11.3.201
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Mariñelarena-Dondena, Luciana; Ferretti, Edgardo; Maragoudakis, Manolis; Sapino, Maximiliano Emanuel; Errecalde, Marcelo Luis; Predicting Depression: a comparative study of machine learning approaches based on language usage; Centro de Estudios Académicos en Neuropsicología; Cuadernos de Neuropsicología; 11; 3; 12-2017; 42-54
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES