Artículo
The fundamental group of the p-subgroup complex
Fecha de publicación:
09/2020
Editorial:
Oxford University Press
Revista:
Journal of the London Mathematical Society
ISSN:
0024-6107
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the fundamental group of the p-subgroup complex of a finite group G. We show first that pi1(A_3(Alt_{10})) is not a free group (here Alt_{10} is the alternating group on 10 letters). This is the first concrete example in the literature of a p-subgroup complex with non-free fundamental group. We prove that, modulo a well-known conjecture of M. Aschbacher, pi1(A_p(G)) = pi1(A_p(S_G)) * F, where F is a free group and pi1(A_p(S_G)) is free if S_G is not almost simple. Here S_G = Omega_1(G)/O_{p´}(Omega_1(G)). This result essentially reduces the study of the fundamental group of p-subgroup complexes to the almost simple case. We also exhibit various families of almost simple groups whose p-subgroup complexes have free fundamental group.
Palabras clave:
p-subgroups
,
posets
,
finite groups
,
fundamental group
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Minian, Elias Gabriel; Piterman, Kevin; The fundamental group of the p-subgroup complex; Oxford University Press; Journal of the London Mathematical Society; 103; 2; 9-2020; 449-469
Compartir
Altmétricas