Mostrar el registro sencillo del ítem
dc.contributor.author
Minian, Elias Gabriel
dc.contributor.author
Piterman, Kevin
dc.date.available
2021-11-15T22:27:05Z
dc.date.issued
2020-09
dc.identifier.citation
Minian, Elias Gabriel; Piterman, Kevin; The fundamental group of the p-subgroup complex; Oxford University Press; Journal of the London Mathematical Society; 103; 2; 9-2020; 449-469
dc.identifier.issn
0024-6107
dc.identifier.uri
http://hdl.handle.net/11336/146939
dc.description.abstract
We study the fundamental group of the p-subgroup complex of a finite group G. We show first that pi1(A_3(Alt_{10})) is not a free group (here Alt_{10} is the alternating group on 10 letters). This is the first concrete example in the literature of a p-subgroup complex with non-free fundamental group. We prove that, modulo a well-known conjecture of M. Aschbacher, pi1(A_p(G)) = pi1(A_p(S_G)) * F, where F is a free group and pi1(A_p(S_G)) is free if S_G is not almost simple. Here S_G = Omega_1(G)/O_{p´}(Omega_1(G)). This result essentially reduces the study of the fundamental group of p-subgroup complexes to the almost simple case. We also exhibit various families of almost simple groups whose p-subgroup complexes have free fundamental group.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
p-subgroups
dc.subject
posets
dc.subject
finite groups
dc.subject
fundamental group
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The fundamental group of the p-subgroup complex
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:35:14Z
dc.journal.volume
103
dc.journal.number
2
dc.journal.pagination
449-469
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Journal of the London Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.lms.ac.uk/publications/jlms
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1112/jlms.12380
Archivos asociados