Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hybrid model for fault detection and diagnosis in an industrial distillation column

Picabea, Julia ValentinaIcon ; Maestri, Mauricio LeonardoIcon ; Cassanello Fernandez, Miryam CelesteIcon ; Horowitz, Gabriel Ignacio
Fecha de publicación: 07/2020
Editorial: De Gruyter
Revista: Chemical Product and Process Modeling
ISSN: 1934-2659
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

The present work describes a method of automatic fault detection and identification based on a hybrid model (HM): First Principles – Neural Network. The FPM can simulate a wide range of situations while the NN corrects the model output using information from the historical data of the process. Operating conditions corresponding to different types of faults were simulated with the HM and saved with their description in a process state library. To detect a fault, the online measured data was compared with that corresponding to the operation under normal conditions. If a significant deviation was detected, the current state was compared with all the states stored in the process state library and it was identified as the one at the shortest distance. The method was tested with real data from a methanol-water industrial distillation column. During the studied period of operation of the plant, two faults were identified and reported. The proposed method was able to identify such failures more effectively than an equivalent model of first principles. The results obtained show that the proposed method has a great potential to be used in the automatic diagnosis of faults in refining and petrochemical processes.
Palabras clave: FAULT DETECTION , FIRST PRINCIPLE MODEL , HYBRID MODEL , NEURAL NETWORK , PROCESS MONITORING
Ver el registro completo
 
Archivos asociados
Tamaño: 11.82Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/146935
DOI: https://doi.org/10.1515/cppm-2020-0004
URL: https://www.degruyter.com/document/doi/10.1515/cppm-2020-0004/html
Colecciones
Articulos(ITAPROQ)
Articulos de INSTITUTO DE TECNOLOGIA DE ALIMENTOS Y PROCESOS QUIMICOS
Citación
Picabea, Julia Valentina; Maestri, Mauricio Leonardo; Cassanello Fernandez, Miryam Celeste; Horowitz, Gabriel Ignacio; Hybrid model for fault detection and diagnosis in an industrial distillation column; De Gruyter; Chemical Product and Process Modeling; 16; 3; 7-2020; 169-180
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES