Mostrar el registro sencillo del ítem
dc.contributor.author
Picabea, Julia Valentina
dc.contributor.author
Maestri, Mauricio Leonardo
dc.contributor.author
Cassanello Fernandez, Miryam Celeste
dc.contributor.author
Horowitz, Gabriel Ignacio
dc.date.available
2021-11-15T21:56:24Z
dc.date.issued
2020-07
dc.identifier.citation
Picabea, Julia Valentina; Maestri, Mauricio Leonardo; Cassanello Fernandez, Miryam Celeste; Horowitz, Gabriel Ignacio; Hybrid model for fault detection and diagnosis in an industrial distillation column; De Gruyter; Chemical Product and Process Modeling; 16; 3; 7-2020; 169-180
dc.identifier.issn
1934-2659
dc.identifier.uri
http://hdl.handle.net/11336/146935
dc.description.abstract
The present work describes a method of automatic fault detection and identification based on a hybrid model (HM): First Principles – Neural Network. The FPM can simulate a wide range of situations while the NN corrects the model output using information from the historical data of the process. Operating conditions corresponding to different types of faults were simulated with the HM and saved with their description in a process state library. To detect a fault, the online measured data was compared with that corresponding to the operation under normal conditions. If a significant deviation was detected, the current state was compared with all the states stored in the process state library and it was identified as the one at the shortest distance. The method was tested with real data from a methanol-water industrial distillation column. During the studied period of operation of the plant, two faults were identified and reported. The proposed method was able to identify such failures more effectively than an equivalent model of first principles. The results obtained show that the proposed method has a great potential to be used in the automatic diagnosis of faults in refining and petrochemical processes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FAULT DETECTION
dc.subject
FIRST PRINCIPLE MODEL
dc.subject
HYBRID MODEL
dc.subject
NEURAL NETWORK
dc.subject
PROCESS MONITORING
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Hybrid model for fault detection and diagnosis in an industrial distillation column
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:51:07Z
dc.journal.volume
16
dc.journal.number
3
dc.journal.pagination
169-180
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
dc.description.fil
Fil: Maestri, Mauricio Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
dc.description.fil
Fil: Cassanello Fernandez, Miryam Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
dc.description.fil
Fil: Horowitz, Gabriel Ignacio. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Chemical Product and Process Modeling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/cppm-2020-0004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/cppm-2020-0004/html
Archivos asociados