Mostrar el registro sencillo del ítem

dc.contributor.author
Acosta, Joel Alejandro  
dc.contributor.author
Garbarz, Alan Nicolás  
dc.contributor.author
Goya, Andrés Fabio  
dc.contributor.author
Leston, Mauricio  
dc.date.available
2021-11-05T12:36:09Z  
dc.date.issued
2020-06  
dc.identifier.citation
Acosta, Joel Alejandro; Garbarz, Alan Nicolás; Goya, Andrés Fabio; Leston, Mauricio; Asymptotic boundary conditions and square integrability in the partition function of AdS gravity; Springer; Journal of High Energy Physics; 2020; 6; 6-2020; 1-10  
dc.identifier.issn
1126-6708  
dc.identifier.uri
http://hdl.handle.net/11336/146096  
dc.description.abstract
There has been renewed interest in the path-integral computation of the partition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite group of (improper) diffeomorphisms arises which acts canonically on phase space as two independent Virasoro symmetries. The gauge group turns out to be composed of so-called “proper” diffeomorphisms which approach the identity at infinity fast enough. However, it is sometimes far from evident to identify where BH boundary conditions enter in the path integral, and much more difficult to see how the improper diffeomorphisms are left out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel method to compute the determinants coming from the path integral. Here we identify how BH boundary conditions follow naturally from the usual requirement of square-integrability of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to symmetries in the path integral. Our strategy is general enough to apply to other approaches where square integrability is assumed. Finally, we show that square integrability implies that the asymptotic symmetries in higher dimensional AdS gravity are just isometries.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRST QUANTIZATION  
dc.subject
FIELD THEORIES IN LOWER DIMENSIONS  
dc.subject
MODELS OF QUANTUM GRAVITY  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:28:18Z  
dc.journal.volume
2020  
dc.journal.number
6  
dc.journal.pagination
1-10  
dc.journal.pais
Alemania  
dc.journal.ciudad
Trieste  
dc.description.fil
Fil: Acosta, Joel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Goya, Andrés Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.journal.title
Journal of High Energy Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/JHEP06(2020)172