Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Asymptotic boundary conditions and square integrability in the partition function of AdS gravity

Acosta, Joel AlejandroIcon ; Garbarz, Alan NicolásIcon ; Goya, Andrés FabioIcon ; Leston, MauricioIcon
Fecha de publicación: 06/2020
Editorial: Springer
Revista: Journal of High Energy Physics
ISSN: 1126-6708
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

There has been renewed interest in the path-integral computation of the partition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite group of (improper) diffeomorphisms arises which acts canonically on phase space as two independent Virasoro symmetries. The gauge group turns out to be composed of so-called “proper” diffeomorphisms which approach the identity at infinity fast enough. However, it is sometimes far from evident to identify where BH boundary conditions enter in the path integral, and much more difficult to see how the improper diffeomorphisms are left out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel method to compute the determinants coming from the path integral. Here we identify how BH boundary conditions follow naturally from the usual requirement of square-integrability of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to symmetries in the path integral. Our strategy is general enough to apply to other approaches where square integrability is assumed. Finally, we show that square integrability implies that the asymptotic symmetries in higher dimensional AdS gravity are just isometries.
Palabras clave: BRST QUANTIZATION , FIELD THEORIES IN LOWER DIMENSIONS , MODELS OF QUANTUM GRAVITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 223.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/146096
DOI: http://dx.doi.org/10.1007/JHEP06(2020)172
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Acosta, Joel Alejandro; Garbarz, Alan Nicolás; Goya, Andrés Fabio; Leston, Mauricio; Asymptotic boundary conditions and square integrability in the partition function of AdS gravity; Springer; Journal of High Energy Physics; 2020; 6; 6-2020; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES