Mostrar el registro sencillo del ítem
dc.contributor.author
Tavera Busso, Iván
dc.contributor.author
Rodriguez Nuñez, Martin
dc.contributor.author
Amarillo, Ana Carolina
dc.contributor.author
Mettan, Fabricio
dc.contributor.author
Carreras, Hebe Alejandra
dc.date.available
2021-11-03T21:38:25Z
dc.date.issued
2021-09
dc.identifier.citation
Tavera Busso, Iván; Rodriguez Nuñez, Martin; Amarillo, Ana Carolina; Mettan, Fabricio; Carreras, Hebe Alejandra; Modeling air pollution-related hospital admissions employing remote sensing and geographical information systems; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 261; 9-2021; 1-12
dc.identifier.issn
1352-2310
dc.identifier.uri
http://hdl.handle.net/11336/145918
dc.description.abstract
Land-use regression models and remote sensing data have been widely employed to forecast atmospheric aerosol levels. Recently, these methodologies have been combined to predict the influence of this pollutant on human health. However, traditional land-use regression models do not often consider the complex interactions between predictors, and most of these do not include socioeconomic variables. Thus, in the present study, we aimed to estimate suspended particle-related hospital admissions by employing remote sensing, meteorological, environmental, and demographic parameters. In this cohort study, we analyzed 1,612,049 hospital admissions from Córdoba city, Argentina, from 2005 to 2011, and developed several regression and machine learning land-use models to compare their predictive powers. We found that childhood was the age group with the highest number of hospital admissions related with upper respiratory tract diseases. When predicting population-normalized hospital admissions, the machine learning models, in particular the generalized boosted machine, revealed a better performance than regression models, exhibiting the lowest root mean square error (0.4264) in the test data set. This model also achieved the best R2adj (0.6088) when plotting predicted vs. reported normalized cases. The most important predictors were the meteorological variables, followed by the aerosol optical depth and the planet boundary layer height. Some other predictors, such as educational level, land value, and unsatisfied basic needs, showed less relevance but enhanced the model's prediction power. Furthermore, the predictive power increased after a 1-day lag in hospital admissions (RMSE = 0.4121), highlighting the importance of meteorological and environmental variables in the onset of respiratory diseases.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LAND-USE MODELS
dc.subject
MACHINE LEARNING
dc.subject
RESPIRATORY DISEASES
dc.subject
SUSPENDED PARTICLES
dc.subject.classification
Salud Pública y Medioambiental
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.subject.classification
Ciencias Medioambientales
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Modeling air pollution-related hospital admissions employing remote sensing and geographical information systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-10-27T13:34:01Z
dc.journal.volume
261
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.description.fil
Fil: Rodriguez Nuñez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.description.fil
Fil: Amarillo, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.description.fil
Fil: Mettan, Fabricio. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Química General; Argentina
dc.description.fil
Fil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.journal.title
Atmospheric Environment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S135223102100323X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.atmosenv.2021.118502
Archivos asociados