Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modeling air pollution-related hospital admissions employing remote sensing and geographical information systems

Tavera Busso, IvánIcon ; Rodriguez Nuñez, MartinIcon ; Amarillo, Ana CarolinaIcon ; Mettan, Fabricio; Carreras, Hebe AlejandraIcon
Fecha de publicación: 09/2021
Editorial: Pergamon-Elsevier Science Ltd
Revista: Atmospheric Environment
ISSN: 1352-2310
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Salud Pública y Medioambiental; Ciencias Medioambientales

Resumen

Land-use regression models and remote sensing data have been widely employed to forecast atmospheric aerosol levels. Recently, these methodologies have been combined to predict the influence of this pollutant on human health. However, traditional land-use regression models do not often consider the complex interactions between predictors, and most of these do not include socioeconomic variables. Thus, in the present study, we aimed to estimate suspended particle-related hospital admissions by employing remote sensing, meteorological, environmental, and demographic parameters. In this cohort study, we analyzed 1,612,049 hospital admissions from Córdoba city, Argentina, from 2005 to 2011, and developed several regression and machine learning land-use models to compare their predictive powers. We found that childhood was the age group with the highest number of hospital admissions related with upper respiratory tract diseases. When predicting population-normalized hospital admissions, the machine learning models, in particular the generalized boosted machine, revealed a better performance than regression models, exhibiting the lowest root mean square error (0.4264) in the test data set. This model also achieved the best R2adj (0.6088) when plotting predicted vs. reported normalized cases. The most important predictors were the meteorological variables, followed by the aerosol optical depth and the planet boundary layer height. Some other predictors, such as educational level, land value, and unsatisfied basic needs, showed less relevance but enhanced the model's prediction power. Furthermore, the predictive power increased after a 1-day lag in hospital admissions (RMSE = 0.4121), highlighting the importance of meteorological and environmental variables in the onset of respiratory diseases.
Palabras clave: LAND-USE MODELS , MACHINE LEARNING , RESPIRATORY DISEASES , SUSPENDED PARTICLES
Ver el registro completo
 
Archivos asociados
Tamaño: 8.623Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/145918
URL: https://linkinghub.elsevier.com/retrieve/pii/S135223102100323X
DOI: https://doi.org/10.1016/j.atmosenv.2021.118502
Colecciones
Articulos(IMBIV)
Articulos de INST.MULTIDISCIPL.DE BIOLOGIA VEGETAL (P)
Citación
Tavera Busso, Iván; Rodriguez Nuñez, Martin; Amarillo, Ana Carolina; Mettan, Fabricio; Carreras, Hebe Alejandra; Modeling air pollution-related hospital admissions employing remote sensing and geographical information systems; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 261; 9-2021; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES