Mostrar el registro sencillo del ítem

dc.contributor.author
Leonardi, Florencia Graciela  
dc.contributor.author
López y Rosenfeld, Matías  
dc.contributor.author
Rodriguez, Daniela  
dc.contributor.author
Severino, Magno T. F.  
dc.contributor.author
Sued, Raquel Mariela  
dc.date.available
2021-11-03T16:45:12Z  
dc.date.issued
2020-07  
dc.identifier.citation
Leonardi, Florencia Graciela; López y Rosenfeld, Matías; Rodriguez, Daniela; Severino, Magno T. F.; Sued, Raquel Mariela; Independent block identification in multivariate time series; Wiley Blackwell Publishing, Inc; Journal Of Time Series Analysis; 42; 1; 7-2020; 19-33  
dc.identifier.issn
0143-9782  
dc.identifier.uri
http://hdl.handle.net/11336/145840  
dc.description.abstract
In this-30 work we propose a model selection criterion to estimate the points of independence of a random vector, producing a decomposition of the vector distribution function into independent blocks. The method, based on a general estimator of the distribution function, can be applied for discrete or continuous random vectors, and for i.i.d. data or dependent time series. We prove the consistency of the approach under general conditions on the estimator of the distribution function and we show that the consistency holds for i.i.d. data and discrete time series with mixing conditions. We also propose an efficient algorithm to approximate the estimator and show the performance of the method on simulated data. We apply the method in a real dataset to estimate the distribution of the flow over several locations on a river, observed at different time points.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIMENSIONALITY REDUCTION  
dc.subject
MODEL SELECTION  
dc.subject
REGULARIZED ESTIMATOR  
dc.subject
STRUCTURE ESTIMATION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Independent block identification in multivariate time series  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T14:57:52Z  
dc.journal.volume
42  
dc.journal.number
1  
dc.journal.pagination
19-33  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: López y Rosenfeld, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; Argentina  
dc.description.fil
Fil: Rodriguez, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Severino, Magno T. F.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Journal Of Time Series Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/jtsa.12553  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/ftr/10.1111/jtsa.12553