Artículo
Independent block identification in multivariate time series
Leonardi, Florencia Graciela; López y Rosenfeld, Matías
; Rodriguez, Daniela; Severino, Magno T. F.; Sued, Raquel Mariela
Fecha de publicación:
07/2020
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Journal Of Time Series Analysis
ISSN:
0143-9782
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this-30 work we propose a model selection criterion to estimate the points of independence of a random vector, producing a decomposition of the vector distribution function into independent blocks. The method, based on a general estimator of the distribution function, can be applied for discrete or continuous random vectors, and for i.i.d. data or dependent time series. We prove the consistency of the approach under general conditions on the estimator of the distribution function and we show that the consistency holds for i.i.d. data and discrete time series with mixing conditions. We also propose an efficient algorithm to approximate the estimator and show the performance of the method on simulated data. We apply the method in a real dataset to estimate the distribution of the flow over several locations on a river, observed at different time points.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Articulos(CEMIC-CONICET)
Articulos de CENTRO DE EDUCACION MEDICA E INVESTIGACIONES CLINICAS "NORBERTO QUIRNO"
Articulos de CENTRO DE EDUCACION MEDICA E INVESTIGACIONES CLINICAS "NORBERTO QUIRNO"
Citación
Leonardi, Florencia Graciela; López y Rosenfeld, Matías; Rodriguez, Daniela; Severino, Magno T. F.; Sued, Raquel Mariela; Independent block identification in multivariate time series; Wiley Blackwell Publishing, Inc; Journal Of Time Series Analysis; 42; 1; 7-2020; 19-33
Compartir
Altmétricas