Mostrar el registro sencillo del ítem

dc.contributor.author
Granitto, Pablo Miguel  
dc.contributor.author
Burgos, Andrés  
dc.date.available
2021-10-28T17:44:24Z  
dc.date.issued
2009-12  
dc.identifier.citation
Granitto, Pablo Miguel; Burgos, Andrés; Feature selection on wide multiclass problems using OVA-RFE; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 13; 44; 12-2009; 27-34  
dc.identifier.issn
1137-3601  
dc.identifier.uri
http://hdl.handle.net/11336/145380  
dc.description.abstract
Feature selection is a pre–processing technique commonly used with high–dimensional datasets. It is aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. For multiclass classification problems, recent works suggested that decomposing the multiclass problem in a set of binary ones, and doing the feature selection on the binary problems could be a sound strategy. In this work we combined the well–known Recursive Feature Elimination (RFE) algorithm with the simple One–Vs–All (OVA) technique for multiclass problems, to produce the new OVA–RFE selection method. We evaluated OVA–RFE using wide datasets from genomic and mass– spectrometry analysis, and several classifiers. In particular, we compared the new method with the traditional RFE (applied to a direct multiclass classifier) in terms of accuracy and stability. Our results show that OVA– RFE is no better than the traditional method, which is in opposition to previous results on similar methods. The opposite results are related to a different interpretation of the real number of variables in use by both methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedad Iberoamericana de Inteligencia Artificial  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FEATURE SELECTION  
dc.subject
MULTICLASS  
dc.subject
ONE-VS-ALL  
dc.subject
WIDE DATASETS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Feature selection on wide multiclass problems using OVA-RFE  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-23T21:41:05Z  
dc.identifier.eissn
1988-3064  
dc.journal.volume
13  
dc.journal.number
44  
dc.journal.pagination
27-34  
dc.journal.pais
España  
dc.description.fil
Fil: Granitto, Pablo Miguel. Erasmus Université Paul Cézanne Aix Marseille III; Francia. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Burgos, Andrés. Erasmus Université Paul Cézanne Aix Marseille III; Francia. Universidad Nacional de Rosario; Argentina  
dc.journal.title
Inteligencia Artificial  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4114/ia.v13i44.1043  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/public/Vol.1-14.html#2009