Mostrar el registro sencillo del ítem
dc.contributor.author
Granitto, Pablo Miguel
dc.contributor.author
Burgos, Andrés
dc.date.available
2021-10-28T17:44:24Z
dc.date.issued
2009-12
dc.identifier.citation
Granitto, Pablo Miguel; Burgos, Andrés; Feature selection on wide multiclass problems using OVA-RFE; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 13; 44; 12-2009; 27-34
dc.identifier.issn
1137-3601
dc.identifier.uri
http://hdl.handle.net/11336/145380
dc.description.abstract
Feature selection is a pre–processing technique commonly used with high–dimensional datasets. It is aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. For multiclass classification problems, recent works suggested that decomposing the multiclass problem in a set of binary ones, and doing the feature selection on the binary problems could be a sound strategy. In this work we combined the well–known Recursive Feature Elimination (RFE) algorithm with the simple One–Vs–All (OVA) technique for multiclass problems, to produce the new OVA–RFE selection method. We evaluated OVA–RFE using wide datasets from genomic and mass– spectrometry analysis, and several classifiers. In particular, we compared the new method with the traditional RFE (applied to a direct multiclass classifier) in terms of accuracy and stability. Our results show that OVA– RFE is no better than the traditional method, which is in opposition to previous results on similar methods. The opposite results are related to a different interpretation of the real number of variables in use by both methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sociedad Iberoamericana de Inteligencia Artificial
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FEATURE SELECTION
dc.subject
MULTICLASS
dc.subject
ONE-VS-ALL
dc.subject
WIDE DATASETS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Feature selection on wide multiclass problems using OVA-RFE
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-23T21:41:05Z
dc.identifier.eissn
1988-3064
dc.journal.volume
13
dc.journal.number
44
dc.journal.pagination
27-34
dc.journal.pais
España
dc.description.fil
Fil: Granitto, Pablo Miguel. Erasmus Université Paul Cézanne Aix Marseille III; Francia. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Burgos, Andrés. Erasmus Université Paul Cézanne Aix Marseille III; Francia. Universidad Nacional de Rosario; Argentina
dc.journal.title
Inteligencia Artificial
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4114/ia.v13i44.1043
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/public/Vol.1-14.html#2009
Archivos asociados