Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Feature selection on wide multiclass problems using OVA-RFE

Granitto, Pablo MiguelIcon ; Burgos, Andrés
Fecha de publicación: 12/2009
Editorial: Sociedad Iberoamericana de Inteligencia Artificial
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Feature selection is a pre–processing technique commonly used with high–dimensional datasets. It is aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. For multiclass classification problems, recent works suggested that decomposing the multiclass problem in a set of binary ones, and doing the feature selection on the binary problems could be a sound strategy. In this work we combined the well–known Recursive Feature Elimination (RFE) algorithm with the simple One–Vs–All (OVA) technique for multiclass problems, to produce the new OVA–RFE selection method. We evaluated OVA–RFE using wide datasets from genomic and mass– spectrometry analysis, and several classifiers. In particular, we compared the new method with the traditional RFE (applied to a direct multiclass classifier) in terms of accuracy and stability. Our results show that OVA– RFE is no better than the traditional method, which is in opposition to previous results on similar methods. The opposite results are related to a different interpretation of the real number of variables in use by both methods.
Palabras clave: FEATURE SELECTION , MULTICLASS , ONE-VS-ALL , WIDE DATASETS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 572.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/145380
DOI: http://dx.doi.org/10.4114/ia.v13i44.1043
URL: http://journal.iberamia.org/public/Vol.1-14.html#2009
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Granitto, Pablo Miguel; Burgos, Andrés; Feature selection on wide multiclass problems using OVA-RFE; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 13; 44; 12-2009; 27-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES