Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez, Ariel  
dc.date.available
2021-10-25T13:54:44Z  
dc.date.issued
2020-02-13  
dc.identifier.citation
Fernandez, Ariel; Deep Learning Unravels a Dynamic Hierarchy While Empowering molecular Dynamics Simulations; Wiley VCH Verlag; Annalen Der Physik; 532; 3; 13-2-2020; 1-5; 1900526  
dc.identifier.issn
0003-3804  
dc.identifier.uri
http://hdl.handle.net/11336/144908  
dc.description.abstract
Molecular dynamics (MD) provide predictive understanding of the behavior of condensed matter. However, its true potential remains largely untested because relevant timescales are often inaccessible, limited portions of conformation space get sampled, and infrequent events are usually irreproducible. A culprit is the huge informational burden required to iterate integration steps. To address the problem, deep learning is applied to encode the dynamics into a shorthand embodiment retaining only essential topological features of the vector field that steers MD integration. The flow is simplified via an equivalence relation that identifies conformations within basins of attraction in potential energy and encodes the dynamics onto a modulo-basin ?quotient space? where fast motions are averaged out. The quotient space projection enables coverage of realistic timescales while unraveling the underlying dynamic hierarchy. Deep learning is exploited to propagate the simplified trajectory beyond MD-accessible timescales and to reconstruct it at atomistic level. As shown, the quotient-encoding-propagating-decoding scheme generates within a few hours protein folding pathways with experimentally verified outcomes. By contrast, MD computations covering comparable timespans would take over a hundred days on special-purpose supercomputers. Thus, quotient space constitutes a model for hierarchical understanding of MD simulation while enabling access to realistic timescales.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
BASIN OF ATTRACTION  
dc.subject
DEEP LEARNING  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
POTENTIAL ENERGY SURFACE  
dc.subject
PROTEIN FOLDING PROBLEM  
dc.subject
QUOTIENT SPACE  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Deep Learning Unravels a Dynamic Hierarchy While Empowering molecular Dynamics Simulations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-02-18T15:44:25Z  
dc.journal.volume
532  
dc.journal.number
3  
dc.journal.pagination
1-5; 1900526  
dc.journal.pais
Alemania  
dc.journal.ciudad
Weinheim  
dc.description.fil
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.journal.title
Annalen Der Physik  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/andp.201900526  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/andp.201900526