Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Deep Learning Unravels a Dynamic Hierarchy While Empowering molecular Dynamics Simulations

Fernandez, ArielIcon
Fecha de publicación: 13/02/2020
Editorial: Wiley VCH Verlag
Revista: Annalen Der Physik
ISSN: 0003-3804
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Molecular dynamics (MD) provide predictive understanding of the behavior of condensed matter. However, its true potential remains largely untested because relevant timescales are often inaccessible, limited portions of conformation space get sampled, and infrequent events are usually irreproducible. A culprit is the huge informational burden required to iterate integration steps. To address the problem, deep learning is applied to encode the dynamics into a shorthand embodiment retaining only essential topological features of the vector field that steers MD integration. The flow is simplified via an equivalence relation that identifies conformations within basins of attraction in potential energy and encodes the dynamics onto a modulo-basin ?quotient space? where fast motions are averaged out. The quotient space projection enables coverage of realistic timescales while unraveling the underlying dynamic hierarchy. Deep learning is exploited to propagate the simplified trajectory beyond MD-accessible timescales and to reconstruct it at atomistic level. As shown, the quotient-encoding-propagating-decoding scheme generates within a few hours protein folding pathways with experimentally verified outcomes. By contrast, MD computations covering comparable timespans would take over a hundred days on special-purpose supercomputers. Thus, quotient space constitutes a model for hierarchical understanding of MD simulation while enabling access to realistic timescales.
Palabras clave: ARTIFICIAL INTELLIGENCE , BASIN OF ATTRACTION , DEEP LEARNING , MOLECULAR DYNAMICS , POTENTIAL ENERGY SURFACE , PROTEIN FOLDING PROBLEM , QUOTIENT SPACE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.991Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/144908
DOI: http://dx.doi.org/10.1002/andp.201900526
URL: https://onlinelibrary.wiley.com/doi/10.1002/andp.201900526
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Fernandez, Ariel; Deep Learning Unravels a Dynamic Hierarchy While Empowering molecular Dynamics Simulations; Wiley VCH Verlag; Annalen Der Physik; 532; 3; 13-2-2020; 1-5; 1900526
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES