Mostrar el registro sencillo del ítem

dc.contributor.author
Rolon, Roman Emanuel  
dc.contributor.author
Di Persia, Leandro Ezequiel  
dc.contributor.author
Spies, Ruben Daniel  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.date.available
2021-10-19T17:25:31Z  
dc.date.issued
2020-11  
dc.identifier.citation
Rolon, Roman Emanuel; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; A multi-class structured dictionary learning method using discriminant atom selection; Springer; Pattern Analysis And Applications; 24; 2; 11-2020; 685-700  
dc.identifier.issn
1433-7541  
dc.identifier.uri
http://hdl.handle.net/11336/144318  
dc.description.abstract
In the last decade, traditional dictionary learning methods have been successfully applied to various pattern classification tasks. Although these methods produce sparse representations of signals which are robust against distortions and missing data, such representations quite often turn out to be unsuitable if the final objective is signal classification. In order to overcome, or at least to attenuate, such a weakness, several new methods which incorporate discriminant information into sparse-inducing models have emerged in recent years. In particular, methods for discriminant dictionary learning have shown to be more accurate than the traditional ones, which are only focused on minimizing the total representation error. In this work, we present both a novel multi-class discriminant measure and an innovative dictionary learning method. For a given dictionary, this new measure, which takes into account not only when a particular atom is used for representing signals coming from a certain class and the magnitude of its corresponding representation coefficient, but also the effect that such an atom has in the total representation error, is capable of efficiently quantifying the degree of discriminability of each one of the atoms. On the other hand, the new dictionary construction method yields dictionaries which are highly suitable for multi-class classification tasks. Our method was tested with two widely used databases for handwritten digit recognition and for object recognition, and compared with three state-of-the-art classification methods. The results show that our method significantly outperforms the other three achieving good recognition rates and additionally, reducing the computational cost of the classifier.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HANDWRITTEN DIGIT RECOGNITION  
dc.subject
MULTI-CLASS DISCRIMINANT MEASURE  
dc.subject
OBJECT RECOGNITION  
dc.subject
SPARSE CODING  
dc.subject
STRUCTURED DICTIONARY LEARNING  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A multi-class structured dictionary learning method using discriminant atom selection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T14:03:03Z  
dc.journal.volume
24  
dc.journal.number
2  
dc.journal.pagination
685-700  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Rolon, Roman Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Pattern Analysis And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007%2Fs10044-020-00939-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10044-020-00939-9