Mostrar el registro sencillo del ítem
dc.contributor.author
Rolon, Roman Emanuel
dc.contributor.author
Di Persia, Leandro Ezequiel
dc.contributor.author
Spies, Ruben Daniel
dc.contributor.author
Rufiner, Hugo Leonardo
dc.date.available
2021-10-19T17:25:31Z
dc.date.issued
2020-11
dc.identifier.citation
Rolon, Roman Emanuel; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; A multi-class structured dictionary learning method using discriminant atom selection; Springer; Pattern Analysis And Applications; 24; 2; 11-2020; 685-700
dc.identifier.issn
1433-7541
dc.identifier.uri
http://hdl.handle.net/11336/144318
dc.description.abstract
In the last decade, traditional dictionary learning methods have been successfully applied to various pattern classification tasks. Although these methods produce sparse representations of signals which are robust against distortions and missing data, such representations quite often turn out to be unsuitable if the final objective is signal classification. In order to overcome, or at least to attenuate, such a weakness, several new methods which incorporate discriminant information into sparse-inducing models have emerged in recent years. In particular, methods for discriminant dictionary learning have shown to be more accurate than the traditional ones, which are only focused on minimizing the total representation error. In this work, we present both a novel multi-class discriminant measure and an innovative dictionary learning method. For a given dictionary, this new measure, which takes into account not only when a particular atom is used for representing signals coming from a certain class and the magnitude of its corresponding representation coefficient, but also the effect that such an atom has in the total representation error, is capable of efficiently quantifying the degree of discriminability of each one of the atoms. On the other hand, the new dictionary construction method yields dictionaries which are highly suitable for multi-class classification tasks. Our method was tested with two widely used databases for handwritten digit recognition and for object recognition, and compared with three state-of-the-art classification methods. The results show that our method significantly outperforms the other three achieving good recognition rates and additionally, reducing the computational cost of the classifier.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HANDWRITTEN DIGIT RECOGNITION
dc.subject
MULTI-CLASS DISCRIMINANT MEASURE
dc.subject
OBJECT RECOGNITION
dc.subject
SPARSE CODING
dc.subject
STRUCTURED DICTIONARY LEARNING
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A multi-class structured dictionary learning method using discriminant atom selection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T14:03:03Z
dc.journal.volume
24
dc.journal.number
2
dc.journal.pagination
685-700
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Rolon, Roman Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Pattern Analysis And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007%2Fs10044-020-00939-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10044-020-00939-9
Archivos asociados