Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A multi-class structured dictionary learning method using discriminant atom selection

Rolon, Roman EmanuelIcon ; Di Persia, Leandro EzequielIcon ; Spies, Ruben DanielIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 11/2020
Editorial: Springer
Revista: Pattern Analysis And Applications
ISSN: 1433-7541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

In the last decade, traditional dictionary learning methods have been successfully applied to various pattern classification tasks. Although these methods produce sparse representations of signals which are robust against distortions and missing data, such representations quite often turn out to be unsuitable if the final objective is signal classification. In order to overcome, or at least to attenuate, such a weakness, several new methods which incorporate discriminant information into sparse-inducing models have emerged in recent years. In particular, methods for discriminant dictionary learning have shown to be more accurate than the traditional ones, which are only focused on minimizing the total representation error. In this work, we present both a novel multi-class discriminant measure and an innovative dictionary learning method. For a given dictionary, this new measure, which takes into account not only when a particular atom is used for representing signals coming from a certain class and the magnitude of its corresponding representation coefficient, but also the effect that such an atom has in the total representation error, is capable of efficiently quantifying the degree of discriminability of each one of the atoms. On the other hand, the new dictionary construction method yields dictionaries which are highly suitable for multi-class classification tasks. Our method was tested with two widely used databases for handwritten digit recognition and for object recognition, and compared with three state-of-the-art classification methods. The results show that our method significantly outperforms the other three achieving good recognition rates and additionally, reducing the computational cost of the classifier.
Palabras clave: HANDWRITTEN DIGIT RECOGNITION , MULTI-CLASS DISCRIMINANT MEASURE , OBJECT RECOGNITION , SPARSE CODING , STRUCTURED DICTIONARY LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.026Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/144318
DOI: http://dx.doi.org/10.1007%2Fs10044-020-00939-9
URL: https://link.springer.com/article/10.1007%2Fs10044-020-00939-9
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Rolon, Roman Emanuel; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; A multi-class structured dictionary learning method using discriminant atom selection; Springer; Pattern Analysis And Applications; 24; 2; 11-2020; 685-700
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES