Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez, Ariel
dc.date.available
2021-10-19T14:36:54Z
dc.date.issued
2020-06-17
dc.identifier.citation
Fernandez, Ariel; Artificial Itelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem; American Chemical Society; Molecular Pharmaceutics; 17; 8; 17-6-2020; 2761-2767
dc.identifier.issn
1543-8384
dc.identifier.uri
http://hdl.handle.net/11336/144280
dc.description.abstract
We explore the possibility of a deep learning (DL) platform that steers drug design to target proteins by inducing binding-competent conformations. We deal with the fact that target proteins are usually not fixed targets but structurally adapt to the ligand in ways that need to be predicted to enable pharmaceutical discovery. In contrast with protein folding predictors, the proposed DL system integrates signals for structural disorder to predict conformations in floppy regions of the target protein that rely on associations with the purposely designed drug to maintain their structural integrity. This is tantamount to solve the drug-induced folding problem within an AI-empowered drug discovery platform. Preliminary testing of the proposed DL platform reveals that it is possible to infer the induced folding ensemble from which a therapeutically targetable conformation gets selected by DL-instructed drug design.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
DEEP LEARNING
dc.subject
DRUG DESIGN
dc.subject
INDUCED PROTEIN FOLDING
dc.subject
MOLECULAR TARGETED THERAPY
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Artificial Itelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-02-18T15:44:27Z
dc.identifier.eissn
1543-8392
dc.journal.volume
17
dc.journal.number
8
dc.journal.pagination
2761-2767
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC.
dc.description.fil
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.journal.title
Molecular Pharmaceutics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/acs.molpharmaceut.0c00470
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00470
Archivos asociados