Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial Itelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem

Fernandez, ArielIcon
Fecha de publicación: 17/06/2020
Editorial: American Chemical Society
Revista: Molecular Pharmaceutics
ISSN: 1543-8384
e-ISSN: 1543-8392
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

We explore the possibility of a deep learning (DL) platform that steers drug design to target proteins by inducing binding-competent conformations. We deal with the fact that target proteins are usually not fixed targets but structurally adapt to the ligand in ways that need to be predicted to enable pharmaceutical discovery. In contrast with protein folding predictors, the proposed DL system integrates signals for structural disorder to predict conformations in floppy regions of the target protein that rely on associations with the purposely designed drug to maintain their structural integrity. This is tantamount to solve the drug-induced folding problem within an AI-empowered drug discovery platform. Preliminary testing of the proposed DL platform reveals that it is possible to infer the induced folding ensemble from which a therapeutically targetable conformation gets selected by DL-instructed drug design.
Palabras clave: ARTIFICIAL INTELLIGENCE , DEEP LEARNING , DRUG DESIGN , INDUCED PROTEIN FOLDING , MOLECULAR TARGETED THERAPY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.035Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/144280
DOI: https://doi.org/10.1021/acs.molpharmaceut.0c00470
URL: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00470
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Fernandez, Ariel; Artificial Itelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem; American Chemical Society; Molecular Pharmaceutics; 17; 8; 17-6-2020; 2761-2767
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES