Mostrar el registro sencillo del ítem
dc.contributor.author
Olivares, F.
dc.contributor.author
Olivares, F.
dc.contributor.author
Zanin, M.
dc.contributor.author
Zanin, M.
dc.contributor.author
Zunino, Luciano José
dc.contributor.author
Zunino, Luciano José
dc.contributor.author
Pérez, D.G.
dc.contributor.author
Pérez, D.G.
dc.date.available
2021-10-18T15:47:05Z
dc.date.issued
2020-06-01
dc.date.issued
2020-06-01
dc.identifier.citation
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
dc.identifier.citation
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
dc.identifier.issn
1054-1500
dc.identifier.issn
1054-1500
dc.identifier.uri
http://hdl.handle.net/11336/144097
dc.description.abstract
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
dc.description.abstract
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
dc.format
application/pdf
dc.format
application/pdf
dc.language.iso
eng
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHAOS
dc.subject
CHAOS
dc.subject
NONLINEAR DYNAMICS
dc.subject
NONLINEAR DYNAMICS
dc.subject
STOCHASTIC PROCESSES
dc.subject
STOCHASTIC PROCESSES
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Contrasting chaotic with stochastic dynamics via ordinal transition networks
dc.title
Contrasting chaotic with stochastic dynamics via ordinal transition networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-06T17:26:36Z
dc.identifier.eissn
1089-7682
dc.identifier.eissn
1089-7682
dc.journal.volume
30
dc.journal.volume
30
dc.journal.number
6
dc.journal.number
6
dc.journal.pagination
1-13
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.journal.ciudad
New York
dc.description.fil
Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; Chile
dc.description.fil
Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; Chile
dc.description.fil
Fil: Zanin, M.. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Zanin, M.. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
dc.description.fil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
dc.description.fil
Fil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chile
dc.description.fil
Fil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chile
dc.journal.title
Chaos
dc.journal.title
Chaos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5142500
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5142500
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5142500
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5142500
Archivos asociados