Artículo
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts. We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
Contrasting chaotic with stochastic dynamics via ordinal transition networks
Título:
Contrasting chaotic with stochastic dynamics via ordinal transition networks
Olivares, F.; Olivares, F.; Zanin, M.; Zanin, M.; Zunino, Luciano José
; Zunino, Luciano José
; Pérez, D.G.; Pérez, D.G.
Fecha de publicación:
01/06/2020
01/06/2020
01/06/2020
Editorial:
American Institute of Physics
American Institute of Physics
American Institute of Physics
Revista:
Chaos
Chaos
Chaos
ISSN:
1054-1500
1054-1500
1054-1500
e-ISSN:
1089-7682
1089-7682
1089-7682
Idioma:
Inglés
Inglés
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIOP)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Citación
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
Compartir
Altmétricas