Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Contrasting chaotic with stochastic dynamics via ordinal transition networks

Título: Contrasting chaotic with stochastic dynamics via ordinal transition networks
Olivares, F.; Olivares, F.; Zanin, M.; Zanin, M.; Zunino, Luciano JoséIcon ; Zunino, Luciano JoséIcon ; Pérez, D.G.; Pérez, D.G.
Fecha de publicación: 01/06/2020
01/06/2020
Editorial: American Institute of Physics
American Institute of Physics
Revista: Chaos
Chaos
ISSN: 1054-1500
1054-1500
e-ISSN: 1089-7682
1089-7682
Idioma: Inglés
Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas; Otras Ciencias Físicas

Resumen

 
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
 
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
 
Palabras clave: CHAOS , CHAOS , NONLINEAR DYNAMICS , NONLINEAR DYNAMICS , STOCHASTIC PROCESSES , STOCHASTIC PROCESSES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.138Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/144097
URL: http://aip.scitation.org/doi/10.1063/1.5142500
URL: http://aip.scitation.org/doi/10.1063/1.5142500
DOI: http://dx.doi.org/10.1063/1.5142500
DOI: http://dx.doi.org/10.1063/1.5142500
Colecciones
Articulos(CIOP)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Citación
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES