Artículo
Critical assessment of protein intrinsic disorder prediction
Necci, Marco; Piovesan, Damiano; Hoque, Md Tamjidul; Walsh, Ian; Iqbal, Sumaiya; Vendruscolo, Michele; Sormanni, Pietro; Wang, Chen; Raimondi, Daniele; Sharma, Ronesh; Zhou, Yaoqi; Litfin, Thomas; Galzitskaya, Oxana Valerianovna; Lobanov, Michail Yu.; Vranken, Wim; Wallner, Björn; Mirabello, Claudio; Malhis, Nawar; Dosztányi, Zsuzsanna; Erdős, Gábor; Mészáros, Bálint; Gao, Jianzhao; Wang, Kui; Hu, Gang; Wu, Zhonghua; Sharma, Alok; Hanson, Jack; Paliwal, Kuldip; Callebaut, Isabelle; Bitard-Feildel, Tristan; Orlando, Gabriele; Peng, Zhenling; Xu, Jinbo; Wang, Sheng; Jones, David T.; Cozzetto, Domenico; Meng, Fanchi; Yan, Jing; Gsponer, Jörg; Cheng, Jianlin; Wu, Tianqi; Kurgan, Lukasz; Promponas, Vasilis J.; Tamana, Stella; Marino, Cristina Ester
; Martinez Perez, Elizabeth
; Chasapi, Anastasia; Ouzounis, Christos; Dunker, A. Keith; Kajava, Andrey V.; Leclercq, Jeremy Y.; Aykac-Fas, Burcu; Lambrughi, Matteo; Maiani, Emiliano; Papaleo, Elena; Chemes, Lucia Beatriz
; Álvarez, Lucía
; González Foutel, Nicolás Sebastián
; Iglesias, Valentin; Pujols, Jordi; Ventura, Salvador; Palopoli, Nicolás
; Benítez, Guillermo Ignacio
; Parisi, Gustavo Daniel
; Bassot, Claudio; Elofsson, Arne; Govindarajan, Sudha; Lamb, John; Salvatore, Marco; Hatos, András; Monzon, Alexander Miguel; Bevilacqua, Martina; Mi?eti?, Ivan; Minervini, Giovanni; Paladin, Lisanna; Quaglia, Federica; Leonardi, Emanuela; Davey, Norman; Horvath, Tamas; Kovacs, Orsolya Panna; Murvai, Nikoletta; Pancsa, Rita; Schad, Eva; Szabo, Beata; Tantos, Agnes; Macedo Ribeiro, Sandra; Manso, Jose Antonio; Pereira, Pedro José Barbosa; Davidović, Radoslav; Veljkovic, Nevena; Hajdu Soltész, Borbála; Pajkos, Mátyás; Szaniszló, Tamás; Guharoy, Mainak; Lazar, Tamas; Macossay Castillo, Mauricio; Tompa, Peter; Tosatto, Silvio C. E.
Fecha de publicación:
04/2021
Editorial:
Nature Publishing Group
Revista:
Nature Methods
ISSN:
1548-7091
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
Palabras clave:
Intrinsically disordered proteins
,
disorder
,
CAID
,
disorder prediction
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Citación
Necci, Marco; Piovesan, Damiano; Hoque, Md Tamjidul; Walsh, Ian; Iqbal, Sumaiya; et al.; Critical assessment of protein intrinsic disorder prediction; Nature Publishing Group; Nature Methods; 18; 5; 4-2021; 472-481
Compartir
Altmétricas