Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Critical assessment of protein intrinsic disorder prediction

Necci, Marco; Piovesan, Damiano; Hoque, Md Tamjidul; Walsh, Ian; Iqbal, Sumaiya; Vendruscolo, Michele; Sormanni, Pietro; Wang, Chen; Raimondi, Daniele; Sharma, Ronesh; Zhou, Yaoqi; Litfin, Thomas; Galzitskaya, Oxana Valerianovna; Lobanov, Michail Yu.; Vranken, Wim; Wallner, Björn; Mirabello, Claudio; Malhis, Nawar; Dosztányi, Zsuzsanna; Erdős, Gábor; Mészáros, Bálint; Gao, Jianzhao; Wang, Kui; Hu, Gang; Wu, Zhonghua; Sharma, Alok; Hanson, Jack; Paliwal, Kuldip; Callebaut, Isabelle; Bitard-Feildel, Tristan; Orlando, Gabriele; Peng, Zhenling; Xu, Jinbo; Wang, Sheng; Jones, David T.; Cozzetto, Domenico; Meng, Fanchi; Yan, Jing; Gsponer, Jörg; Cheng, Jianlin; Wu, Tianqi; Kurgan, Lukasz; Promponas, Vasilis J.; Tamana, Stella; Marino, Cristina EsterIcon ; Martinez Perez, ElizabethIcon ; Chasapi, Anastasia; Ouzounis, Christos; Dunker, A. Keith; Kajava, Andrey V.; Leclercq, Jeremy Y.; Aykac-Fas, Burcu; Lambrughi, Matteo; Maiani, Emiliano; Papaleo, Elena; Chemes, Lucia BeatrizIcon ; Álvarez, LucíaIcon ; González Foutel, Nicolás SebastiánIcon ; Iglesias, Valentin; Pujols, Jordi; Ventura, Salvador; Palopoli, NicolásIcon ; Benítez, Guillermo IgnacioIcon ; Parisi, Gustavo DanielIcon ; Bassot, Claudio; Elofsson, Arne; Govindarajan, Sudha; Lamb, John; Salvatore, Marco; Hatos, András; Monzon, Alexander Miguel; Bevilacqua, Martina; Mi?eti?, Ivan; Minervini, Giovanni; Paladin, Lisanna; Quaglia, Federica; Leonardi, Emanuela; Davey, Norman; Horvath, Tamas; Kovacs, Orsolya Panna; Murvai, Nikoletta; Pancsa, Rita; Schad, Eva; Szabo, Beata; Tantos, Agnes; Macedo Ribeiro, Sandra; Manso, Jose Antonio; Pereira, Pedro José Barbosa; Davidović, Radoslav; Veljkovic, Nevena; Hajdu Soltész, Borbála; Pajkos, Mátyás; Szaniszló, Tamás; Guharoy, Mainak; Lazar, Tamas; Macossay Castillo, Mauricio; Tompa, Peter; Tosatto, Silvio C. E.
Fecha de publicación: 04/2021
Editorial: Nature Publishing Group
Revista: Nature Methods
ISSN: 1548-7091
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
Palabras clave: Intrinsically disordered proteins , disorder , CAID , disorder prediction
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.783Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143754
URL: https://www.nature.com/articles/s41592-021-01117-3
DOI: http://dx.doi.org/10.1038/s41592-021-01117-3
Colecciones
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Citación
Necci, Marco; Piovesan, Damiano; Hoque, Md Tamjidul; Walsh, Ian; Iqbal, Sumaiya; et al.; Critical assessment of protein intrinsic disorder prediction; Nature Publishing Group; Nature Methods; 18; 5; 4-2021; 472-481
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES