Mostrar el registro sencillo del ítem
dc.contributor.author
Belén, Federico

dc.contributor.author
Vallese, Federico Danilo

dc.contributor.author
Leist, Lisa G.T.
dc.contributor.author
Ferrão Flores, Marco
dc.contributor.author
de Araújo Gomes, Adriano
dc.contributor.author
Pistonesi, Marcelo Fabian

dc.date.available
2021-10-14T15:45:33Z
dc.date.issued
2020-09
dc.identifier.citation
Belén, Federico; Vallese, Federico Danilo; Leist, Lisa G.T.; Ferrão Flores, Marco; de Araújo Gomes, Adriano; et al.; Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters; Elsevier Science; Microchemical Journal; 157; 9-2020; 1-8; 104916
dc.identifier.issn
0026-265X
dc.identifier.uri
http://hdl.handle.net/11336/143602
dc.description.abstract
Computer vision-based analytical methods have gained popularity in the literature, digital images and/or movies have been used to build univariate (traditional analytical line) and multivariate models. This paper describes, for the first time to the best of our knowledge, second-order data processing obtained with a computer vision-based analytical device. Therefore, a flow batch assembly coupled whit a drop system to determining arsenic in water samples without chemical/external pretreatment was employed. Arsenic is extracted from the water samples as arsine to react with a drop of silver diethyldithiocarbamate producing a colored complex. The entire reaction is recorded with a digital microscope to obtain videos as a function of time, generating second order data that is subsequently treated with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). The proposed low-cost method exhibits good performance, satisfactory detection limit (0.07 µg L−1) and linear response from 0.05 to 1.00 µg L−1 of As in water samples.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARSENIC
dc.subject
AUTOMATIC SYSTEM
dc.subject
COMPUTER VISION-BASED ANALYTICAL METHOD
dc.subject
DROP
dc.subject
SECOND ORDER DATA
dc.subject
WATER
dc.subject.classification
Química Analítica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-02-18T15:44:24Z
dc.journal.volume
157
dc.journal.pagination
1-8; 104916
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Belén, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Vallese, Federico Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Leist, Lisa G.T.. Christian-Albrechts Universität zu Kiel, Kiel, Germany; Argentina
dc.description.fil
Fil: Ferrão Flores, Marco. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: de Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.journal.title
Microchemical Journal

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0026265X20305609
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.microc.2020.104916
Archivos asociados