Mostrar el registro sencillo del ítem

dc.contributor.author
Belén, Federico  
dc.contributor.author
Vallese, Federico Danilo  
dc.contributor.author
Leist, Lisa G.T.  
dc.contributor.author
Ferrão Flores, Marco  
dc.contributor.author
de Araújo Gomes, Adriano  
dc.contributor.author
Pistonesi, Marcelo Fabian  
dc.date.available
2021-10-14T15:45:33Z  
dc.date.issued
2020-09  
dc.identifier.citation
Belén, Federico; Vallese, Federico Danilo; Leist, Lisa G.T.; Ferrão Flores, Marco; de Araújo Gomes, Adriano; et al.; Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters; Elsevier Science; Microchemical Journal; 157; 9-2020; 1-8; 104916  
dc.identifier.issn
0026-265X  
dc.identifier.uri
http://hdl.handle.net/11336/143602  
dc.description.abstract
Computer vision-based analytical methods have gained popularity in the literature, digital images and/or movies have been used to build univariate (traditional analytical line) and multivariate models. This paper describes, for the first time to the best of our knowledge, second-order data processing obtained with a computer vision-based analytical device. Therefore, a flow batch assembly coupled whit a drop system to determining arsenic in water samples without chemical/external pretreatment was employed. Arsenic is extracted from the water samples as arsine to react with a drop of silver diethyldithiocarbamate producing a colored complex. The entire reaction is recorded with a digital microscope to obtain videos as a function of time, generating second order data that is subsequently treated with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). The proposed low-cost method exhibits good performance, satisfactory detection limit (0.07 µg L−1) and linear response from 0.05 to 1.00 µg L−1 of As in water samples.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARSENIC  
dc.subject
AUTOMATIC SYSTEM  
dc.subject
COMPUTER VISION-BASED ANALYTICAL METHOD  
dc.subject
DROP  
dc.subject
SECOND ORDER DATA  
dc.subject
WATER  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-02-18T15:44:24Z  
dc.journal.volume
157  
dc.journal.pagination
1-8; 104916  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Belén, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Vallese, Federico Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Leist, Lisa G.T.. Christian-Albrechts Universität zu Kiel, Kiel, Germany; Argentina  
dc.description.fil
Fil: Ferrão Flores, Marco. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: de Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.journal.title
Microchemical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0026265X20305609  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.microc.2020.104916