Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters

Belén, FedericoIcon ; Vallese, Federico DaniloIcon ; Leist, Lisa G.T.; Ferrão Flores, Marco; de Araújo Gomes, Adriano; Pistonesi, Marcelo Fabian
Fecha de publicación: 09/2020
Editorial: Elsevier Science
Revista: Microchemical Journal
ISSN: 0026-265X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Computer vision-based analytical methods have gained popularity in the literature, digital images and/or movies have been used to build univariate (traditional analytical line) and multivariate models. This paper describes, for the first time to the best of our knowledge, second-order data processing obtained with a computer vision-based analytical device. Therefore, a flow batch assembly coupled whit a drop system to determining arsenic in water samples without chemical/external pretreatment was employed. Arsenic is extracted from the water samples as arsine to react with a drop of silver diethyldithiocarbamate producing a colored complex. The entire reaction is recorded with a digital microscope to obtain videos as a function of time, generating second order data that is subsequently treated with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). The proposed low-cost method exhibits good performance, satisfactory detection limit (0.07 µg L−1) and linear response from 0.05 to 1.00 µg L−1 of As in water samples.
Palabras clave: ARSENIC , AUTOMATIC SYSTEM , COMPUTER VISION-BASED ANALYTICAL METHOD , DROP , SECOND ORDER DATA , WATER
Ver el registro completo
 
Archivos asociados
Tamaño: 4.635Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143602
URL: https://linkinghub.elsevier.com/retrieve/pii/S0026265X20305609
DOI: https://doi.org/10.1016/j.microc.2020.104916
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Belén, Federico; Vallese, Federico Danilo; Leist, Lisa G.T.; Ferrão Flores, Marco; de Araújo Gomes, Adriano; et al.; Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters; Elsevier Science; Microchemical Journal; 157; 9-2020; 1-8; 104916
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES