Mostrar el registro sencillo del ítem
dc.contributor.author
Gallo, Andrea Lilén
dc.contributor.author
Saal, Linda Victoria
dc.date.available
2021-10-13T18:36:25Z
dc.date.issued
2020-09
dc.identifier.citation
Gallo, Andrea Lilén; Saal, Linda Victoria; Some harmonic analysis on commutative nilmanifolds; Heldermann Verlag; Journal Of Lie Theory; 30; 3; 9-2020; 673-690
dc.identifier.issn
0949-5932
dc.identifier.uri
http://hdl.handle.net/11336/143438
dc.description.abstract
In this work, we consider a family of Gelfand pairs (KnN, N) (inshort (K, N) ) where Nis a two step nilpotent Lie group, and Kis the group oforthogonal automorphisms ofN. This family has a nice analytic property: almos tall these 2-step nilpotent Lie group have square integrable representations. In these cases, following Moore-Wolf’s theory, we find an explicit expression for the inversion formula of N, and as a consequence, we decompose the regular action ofKnNonL2(N). This explicit expression for the Fourier inversion formula of N, specializedto a class of commutative nilmanifolds described by J. Lauret, sharpens the recent analysis due to J. Wolf concerning the regular action ofKnNonL2(N) . When Nis the Heisenberg group, we obtain the decomposition ofL2(N) under the action of KnN for all Ksuch that (K, N) is a Gelfand pair. Finally, we also give aparametrization for the generic spherical functions associated to the pair (K, N) ,and we give an explicit expression for these functions in some cases
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Heldermann Verlag
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GELFAND PAIRS
dc.subject
INVERSION FORMULA
dc.subject
NILPOTENT GROUP
dc.subject
REGULAR REPRESENTATION
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Some harmonic analysis on commutative nilmanifolds
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-06T15:09:25Z
dc.journal.volume
30
dc.journal.number
3
dc.journal.pagination
673-690
dc.journal.pais
Alemania
dc.journal.ciudad
Lemgo
dc.description.fil
Fil: Gallo, Andrea Lilén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Journal Of Lie Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.09873
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.heldermann.de/JLT/JLT30/JLT303/jlt30035.htm
Archivos asociados