Artículo
Some harmonic analysis on commutative nilmanifolds
Fecha de publicación:
09/2020
Editorial:
Heldermann Verlag
Revista:
Journal Of Lie Theory
ISSN:
0949-5932
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we consider a family of Gelfand pairs (KnN, N) (inshort (K, N) ) where Nis a two step nilpotent Lie group, and Kis the group oforthogonal automorphisms ofN. This family has a nice analytic property: almos tall these 2-step nilpotent Lie group have square integrable representations. In these cases, following Moore-Wolf’s theory, we find an explicit expression for the inversion formula of N, and as a consequence, we decompose the regular action ofKnNonL2(N). This explicit expression for the Fourier inversion formula of N, specializedto a class of commutative nilmanifolds described by J. Lauret, sharpens the recent analysis due to J. Wolf concerning the regular action ofKnNonL2(N) . When Nis the Heisenberg group, we obtain the decomposition ofL2(N) under the action of KnN for all Ksuch that (K, N) is a Gelfand pair. Finally, we also give aparametrization for the generic spherical functions associated to the pair (K, N) ,and we give an explicit expression for these functions in some cases
Palabras clave:
GELFAND PAIRS
,
INVERSION FORMULA
,
NILPOTENT GROUP
,
REGULAR REPRESENTATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Gallo, Andrea Lilén; Saal, Linda Victoria; Some harmonic analysis on commutative nilmanifolds; Heldermann Verlag; Journal Of Lie Theory; 30; 3; 9-2020; 673-690
Compartir