Artículo
High-speed directional protection without voltage sensors for distribution feeders with distributed generation integration based on the correlation of signals and machine learning
Morales Garcia, John Armando
; Orduna, Eduardo; Villarroel Gutiérrez, Héctor Alejandro
; Quispi, Juan Carlos
Fecha de publicación:
03/2020
Editorial:
Elsevier Science SA
Revista:
Electric Power Systems Research
ISSN:
0378-7796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper proposes a novel methodology to define fault current direction along the Distribution Feeder (DF) considering Distributed Generation (DG) integration. The proposed methodology is based on Empirical Decomposition (ED), Decision Trees (DT) and Support Vector Machine (SVM). Using ED, it is possible to determine different Principal Components (PCs) that are used are inputs in these DT and SVP classifiers. Assessment of methodology considering different faults, inception angles, fault distances, and others are carried out. Besides, the proposed methodology is tested successfully considering different distribution system topologies and by analyzing special features required by relay manufacturers. Test results highlight the efficiency of the methodology, which presents a concise design and a simple mathematical formulation in the time domain.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IEE)
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Citación
Morales Garcia, John Armando; Orduna, Eduardo; Villarroel Gutiérrez, Héctor Alejandro; Quispi, Juan Carlos ; High-speed directional protection without voltage sensors for distribution feeders with distributed generation integration based on the correlation of signals and machine learning; Elsevier Science SA; Electric Power Systems Research; 184; 3-2020; 106295, 1-13
Compartir
Altmétricas