Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Jorge Ruben  
dc.date.available
2021-10-13T11:43:08Z  
dc.date.issued
2020-05  
dc.identifier.citation
Lauret, Jorge Ruben; Finding solitons; American Mathematical Society; Notices of the American Mathematical Society; 67; 5; 5-2020; 647-657  
dc.identifier.issn
1088-9477  
dc.identifier.uri
http://hdl.handle.net/11336/143400  
dc.description.abstract
On each solvable Lie group, there is at most one solv- soliton up to isometry and scaling. This allows us to en- dow several Lie groups that do not admit Einstein metrics (e.g., nilpotent or unimodular solvable Lie groups) with a canonical Riemannian metric. Analogously, Chern?Ricci, pluriclosed, and HCF (resp., SCF) algebraic solitons pro- vide distinguished Hermitian (resp., almost-Kähler) struc- tures for Lie groups on which Kähler metrics do not exist. Laplacian algebraic solitons play the same role in the ho- mogeneous case, where holonomy 2 is out of reach since Ricci at implies at.The moving-bracket approach allows the rich interplay between soliton geometric structures on Lie groups and soliton Lie algebras, paving the way to many beautiful ap- plications of GIT to differential geometry.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Soliton  
dc.subject
Geometric  
dc.subject
Structure  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Finding solitons  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T15:14:18Z  
dc.identifier.eissn
1088-9477  
dc.journal.volume
67  
dc.journal.number
5  
dc.journal.pagination
647-657  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.journal.title
Notices of the American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/noti2082