Artículo
Finding solitons
Fecha de publicación:
05/2020
Editorial:
American Mathematical Society
Revista:
Notices of the American Mathematical Society
ISSN:
1088-9477
e-ISSN:
1088-9477
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
On each solvable Lie group, there is at most one solv- soliton up to isometry and scaling. This allows us to en- dow several Lie groups that do not admit Einstein metrics (e.g., nilpotent or unimodular solvable Lie groups) with a canonical Riemannian metric. Analogously, Chern?Ricci, pluriclosed, and HCF (resp., SCF) algebraic solitons pro- vide distinguished Hermitian (resp., almost-Kähler) struc- tures for Lie groups on which Kähler metrics do not exist. Laplacian algebraic solitons play the same role in the ho- mogeneous case, where holonomy 2 is out of reach since Ricci at implies at.The moving-bracket approach allows the rich interplay between soliton geometric structures on Lie groups and soliton Lie algebras, paving the way to many beautiful ap- plications of GIT to differential geometry.
Palabras clave:
Soliton
,
Geometric
,
Structure
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Jorge Ruben; Finding solitons; American Mathematical Society; Notices of the American Mathematical Society; 67; 5; 5-2020; 647-657
Compartir
Altmétricas