Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Emilio Agustin  
dc.contributor.author
Will, Cynthia Eugenia  
dc.date.available
2021-10-13T11:37:34Z  
dc.date.issued
2020-06-16  
dc.identifier.citation
Lauret, Emilio Agustin; Will, Cynthia Eugenia; Non-solvable Lie groups with negative Ricci curvature; Birkhauser Boston Inc; Transformation Groups; 16-6-2020; 1-17  
dc.identifier.issn
1083-4362  
dc.identifier.uri
http://hdl.handle.net/11336/143399  
dc.description.abstract
Until a couple of years ago, the only known examples of Lie groups admitting left-invariant metrics with negative Ricci curvature were either solvable or semisimple.We use a general construction from a previous article of the second named author to produce a large number of examples with compact Levi factor. Given a compact semisimple real Lie algebra u and a real representation π satisfying some technical properties, the construction returns a metric Lie algebra (u,π) with negative Ricci operator. In this paper, when u is assumed to be simple, we prove that (u,π) admits a metric having negative Ricci curvature for all but finitely many finite-dimensional irreducible representations of (Formula presented.), regarded as a real representation of u. We also prove in the last section a more general result where the nilradical is not abelian, as it is in every (u,π).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Boston Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ricci curvature  
dc.subject
Lie algebras  
dc.subject
Representations  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Non-solvable Lie groups with negative Ricci curvature  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T15:13:48Z  
dc.identifier.eissn
1531-586X  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina  
dc.journal.title
Transformation Groups  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-020-09582-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00031-020-09582-4