Artículo
Non-solvable Lie groups with negative Ricci curvature
Fecha de publicación:
16/06/2020
Editorial:
Birkhauser Boston Inc
Revista:
Transformation Groups
ISSN:
1083-4362
e-ISSN:
1531-586X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Until a couple of years ago, the only known examples of Lie groups admitting left-invariant metrics with negative Ricci curvature were either solvable or semisimple.We use a general construction from a previous article of the second named author to produce a large number of examples with compact Levi factor. Given a compact semisimple real Lie algebra u and a real representation π satisfying some technical properties, the construction returns a metric Lie algebra (u,π) with negative Ricci operator. In this paper, when u is assumed to be simple, we prove that (u,π) admits a metric having negative Ricci curvature for all but finitely many finite-dimensional irreducible representations of (Formula presented.), regarded as a real representation of u. We also prove in the last section a more general result where the nilradical is not abelian, as it is in every (u,π).
Palabras clave:
Ricci curvature
,
Lie algebras
,
Representations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Emilio Agustin; Will, Cynthia Eugenia; Non-solvable Lie groups with negative Ricci curvature; Birkhauser Boston Inc; Transformation Groups; 16-6-2020; 1-17
Compartir
Altmétricas