Artículo
Robust location estimators in regression models with covariates and responses missing at random
Bianco, Ana Maria
; Boente Boente, Graciela Lina
; González Manteiga, Wenceslao; Pérez González, Ana
Fecha de publicación:
04/11/2020
Editorial:
Taylor & Francis Ltd
Revista:
Journal Of Nonparametric Statistics
ISSN:
1048-5252
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some covariates. The target is a marginal location parameter given through an M-functional. To obtain robust Fisher-consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values assuming a missing at random condition. Three methods are considered to estimate the marginal distribution which allows to obtain the M-location of interest: the well-known inverse probability weighting, a convolution-based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. Different aspects of their asymptotic behaviour are derived under regularity conditions. The robust studied estimators and their classical relatives are compared through numerical experiments under different missing data models, including clean and contaminated samples. The methodology is illustrated through a real data set.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust location estimators in regression models with covariates and responses missing at random; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 32; 4; 4-11-2020; 915-939
Compartir
Altmétricas