Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust location estimators in regression models with covariates and responses missing at random

Bianco, Ana MariaIcon ; Boente Boente, Graciela LinaIcon ; González Manteiga, Wenceslao; Pérez González, Ana
Fecha de publicación: 04/11/2020
Editorial: Taylor & Francis Ltd
Revista: Journal Of Nonparametric Statistics
ISSN: 1048-5252
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some covariates. The target is a marginal location parameter given through an M-functional. To obtain robust Fisher-consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values assuming a missing at random condition. Three methods are considered to estimate the marginal distribution which allows to obtain the M-location of interest: the well-known inverse probability weighting, a convolution-based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. Different aspects of their asymptotic behaviour are derived under regularity conditions. The robust studied estimators and their classical relatives are compared through numerical experiments under different missing data models, including clean and contaminated samples. The methodology is illustrated through a real data set.
Palabras clave: Fisher-consistency , M-location functional , missing at random , robust estimation
Ver el registro completo
 
Archivos asociados
Tamaño: 521.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143228
URL: https://www.tandfonline.com/doi/full/10.1080/10485252.2020.1834108
DOI: https://doi.org/10.1080/10485252.2020.1834108
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust location estimators in regression models with covariates and responses missing at random; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 32; 4; 4-11-2020; 915-939
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES