Mostrar el registro sencillo del ítem

dc.contributor.author
Bianco, Ana Maria  
dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
González Manteiga, Wenceslao  
dc.contributor.author
Pérez González, Ana  
dc.date.available
2021-10-08T02:46:52Z  
dc.date.issued
2020-11-04  
dc.identifier.citation
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust location estimators in regression models with covariates and responses missing at random; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 32; 4; 4-11-2020; 915-939  
dc.identifier.issn
1048-5252  
dc.identifier.uri
http://hdl.handle.net/11336/143228  
dc.description.abstract
This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some covariates. The target is a marginal location parameter given through an M-functional. To obtain robust Fisher-consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values assuming a missing at random condition. Three methods are considered to estimate the marginal distribution which allows to obtain the M-location of interest: the well-known inverse probability weighting, a convolution-based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. Different aspects of their asymptotic behaviour are derived under regularity conditions. The robust studied estimators and their classical relatives are compared through numerical experiments under different missing data models, including clean and contaminated samples. The methodology is illustrated through a real data set.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fisher-consistency  
dc.subject
M-location functional  
dc.subject
missing at random  
dc.subject
robust estimation  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust location estimators in regression models with covariates and responses missing at random  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:23:47Z  
dc.journal.volume
32  
dc.journal.number
4  
dc.journal.pagination
915-939  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Bianco, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Pérez González, Ana. Universidad de Vigo; España  
dc.journal.title
Journal Of Nonparametric Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10485252.2020.1834108  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/10485252.2020.1834108