Mostrar el registro sencillo del ítem
dc.contributor.author
Bianco, Ana Maria
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
González Manteiga, Wenceslao
dc.contributor.author
Pérez González, Ana
dc.date.available
2021-10-08T02:46:52Z
dc.date.issued
2020-11-04
dc.identifier.citation
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust location estimators in regression models with covariates and responses missing at random; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 32; 4; 4-11-2020; 915-939
dc.identifier.issn
1048-5252
dc.identifier.uri
http://hdl.handle.net/11336/143228
dc.description.abstract
This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some covariates. The target is a marginal location parameter given through an M-functional. To obtain robust Fisher-consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values assuming a missing at random condition. Three methods are considered to estimate the marginal distribution which allows to obtain the M-location of interest: the well-known inverse probability weighting, a convolution-based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. Different aspects of their asymptotic behaviour are derived under regularity conditions. The robust studied estimators and their classical relatives are compared through numerical experiments under different missing data models, including clean and contaminated samples. The methodology is illustrated through a real data set.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Fisher-consistency
dc.subject
M-location functional
dc.subject
missing at random
dc.subject
robust estimation
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust location estimators in regression models with covariates and responses missing at random
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:23:47Z
dc.journal.volume
32
dc.journal.number
4
dc.journal.pagination
915-939
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Bianco, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Pérez González, Ana. Universidad de Vigo; España
dc.journal.title
Journal Of Nonparametric Statistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10485252.2020.1834108
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/10485252.2020.1834108
Archivos asociados