Mostrar el registro sencillo del ítem
dc.contributor.author
Bermolen, Paola
dc.contributor.author
Jonckheere, Matthieu Thimothy Samson
dc.contributor.author
Larroca, Federico
dc.contributor.author
Sáenz, Manuel
dc.date.available
2021-10-07T18:05:33Z
dc.date.issued
2019-01
dc.identifier.citation
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Larroca, Federico; Sáenz, Manuel; Degree-greedy algorithms on large random graphs; Association for Computing Machinery; Performance Evaluation Review; 46; 3; 1-2019; 27-32
dc.identifier.issn
0163-5999
dc.identifier.uri
http://hdl.handle.net/11336/143185
dc.description.abstract
Computing the size of maximum independent sets is an NP-hard problem for fixed graphs. Characterizing and designing efficient algorithms to compute (or approximate) this independence number for random graphs are notoriously difficult and still largely open issues. In this paper, we show that a low complexity degree-greedy exploration is actually asymptotically optimal on a large class of sparse random graphs. Encouraged by this result, we present and study two variants of sequential exploration algorithms: static and dynamic degree-aware explorations. We derive hydrodynamic limits for both of them, which in turn allow us to compute the size of the resulting independent set. Whereas the former is simpler to compute, the latter may be used to arbitrarily approximate the degree-greedy algorithm. Both can be implemented in a distributed manner. The corresponding hydrodynamic limits constitute an efficient method to compute or bound the independence number for a large class of sparse random graphs. As an application, we then show how our method may be used to compute (or approximate) the capacity of a large 802.11-based wireless network.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Association for Computing Machinery
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EXPLORATION ALGORITHMS
dc.subject
INDEPENDENCE NUMBER
dc.subject
LARGE RANDOM GRAPHS
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Degree-greedy algorithms on large random graphs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-09T20:15:42Z
dc.journal.volume
46
dc.journal.number
3
dc.journal.pagination
27-32
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bermolen, Paola. Universidad de la Republica. Facultad de Ingeniería; Uruguay
dc.description.fil
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Larroca, Federico. Universidad de la Republica. Facultad de Ingeniería; Uruguay
dc.description.fil
Fil: Sáenz, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.journal.title
Performance Evaluation Review
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3308897.3308910
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/3308897.3308910
Archivos asociados