Mostrar el registro sencillo del ítem

dc.contributor.author
Bermolen, Paola  
dc.contributor.author
Jonckheere, Matthieu Thimothy Samson  
dc.contributor.author
Larroca, Federico  
dc.contributor.author
Sáenz, Manuel  
dc.date.available
2021-10-07T18:05:33Z  
dc.date.issued
2019-01  
dc.identifier.citation
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Larroca, Federico; Sáenz, Manuel; Degree-greedy algorithms on large random graphs; Association for Computing Machinery; Performance Evaluation Review; 46; 3; 1-2019; 27-32  
dc.identifier.issn
0163-5999  
dc.identifier.uri
http://hdl.handle.net/11336/143185  
dc.description.abstract
Computing the size of maximum independent sets is an NP-hard problem for fixed graphs. Characterizing and designing efficient algorithms to compute (or approximate) this independence number for random graphs are notoriously difficult and still largely open issues. In this paper, we show that a low complexity degree-greedy exploration is actually asymptotically optimal on a large class of sparse random graphs. Encouraged by this result, we present and study two variants of sequential exploration algorithms: static and dynamic degree-aware explorations. We derive hydrodynamic limits for both of them, which in turn allow us to compute the size of the resulting independent set. Whereas the former is simpler to compute, the latter may be used to arbitrarily approximate the degree-greedy algorithm. Both can be implemented in a distributed manner. The corresponding hydrodynamic limits constitute an efficient method to compute or bound the independence number for a large class of sparse random graphs. As an application, we then show how our method may be used to compute (or approximate) the capacity of a large 802.11-based wireless network.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Association for Computing Machinery  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXPLORATION ALGORITHMS  
dc.subject
INDEPENDENCE NUMBER  
dc.subject
LARGE RANDOM GRAPHS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Degree-greedy algorithms on large random graphs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-09T20:15:42Z  
dc.journal.volume
46  
dc.journal.number
3  
dc.journal.pagination
27-32  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bermolen, Paola. Universidad de la Republica. Facultad de Ingeniería; Uruguay  
dc.description.fil
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Larroca, Federico. Universidad de la Republica. Facultad de Ingeniería; Uruguay  
dc.description.fil
Fil: Sáenz, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Performance Evaluation Review  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3308897.3308910  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/3308897.3308910