Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Degree-greedy algorithms on large random graphs

Bermolen, Paola; Jonckheere, Matthieu Thimothy SamsonIcon ; Larroca, Federico; Sáenz, ManuelIcon
Fecha de publicación: 01/2019
Editorial: Association for Computing Machinery
Revista: Performance Evaluation Review
ISSN: 0163-5999
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Computing the size of maximum independent sets is an NP-hard problem for fixed graphs. Characterizing and designing efficient algorithms to compute (or approximate) this independence number for random graphs are notoriously difficult and still largely open issues. In this paper, we show that a low complexity degree-greedy exploration is actually asymptotically optimal on a large class of sparse random graphs. Encouraged by this result, we present and study two variants of sequential exploration algorithms: static and dynamic degree-aware explorations. We derive hydrodynamic limits for both of them, which in turn allow us to compute the size of the resulting independent set. Whereas the former is simpler to compute, the latter may be used to arbitrarily approximate the degree-greedy algorithm. Both can be implemented in a distributed manner. The corresponding hydrodynamic limits constitute an efficient method to compute or bound the independence number for a large class of sparse random graphs. As an application, we then show how our method may be used to compute (or approximate) the capacity of a large 802.11-based wireless network.
Palabras clave: EXPLORATION ALGORITHMS , INDEPENDENCE NUMBER , LARGE RANDOM GRAPHS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.165Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143185
URL: https://dl.acm.org/doi/10.1145/3308897.3308910
DOI: http://dx.doi.org/10.1145/3308897.3308910
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Larroca, Federico; Sáenz, Manuel; Degree-greedy algorithms on large random graphs; Association for Computing Machinery; Performance Evaluation Review; 46; 3; 1-2019; 27-32
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES