Mostrar el registro sencillo del ítem
dc.contributor.author
Rodriguez, Daniela Andrea
dc.contributor.author
Valdora, Marina Silvia
dc.contributor.author
Vena, Pablo Claudio
dc.date.available
2021-10-07T17:48:38Z
dc.date.issued
2019-11
dc.identifier.citation
Rodriguez, Daniela Andrea; Valdora, Marina Silvia; Vena, Pablo Claudio; Robust estimation in partially linear regression models with monotonicity constraints; Taylor & Francis; Communications In Statistics-simulation And Computation; 11-2019; 1-14
dc.identifier.issn
0361-0918
dc.identifier.uri
http://hdl.handle.net/11336/143181
dc.description.abstract
Partially linear models are important tools in statistical modelling, combining the flexibility of non–parametric models and the simple interpretation of linear models. Monotonicity constraints appear naturally in certain problems when the response is known to increase with one of the covariates. Estimation methods for partially linear models with monotonicity constraints have been proposed in recent years. These methods have a good performance when all the observations follow the assumed model. However, if a small proportion of atypical observations is present in the sample, these estimators become unreliable. A robust estimation method for these models is proposed and applied to two real data sets. A Monte Carlo simulation study is performed, in which the proposed estimators are compared to existing ones in different situations, both with clean and contaminated samples.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ISOTONIC REGRESSION
dc.subject
PARTIALLY LINEAR MODELS
dc.subject
ROBUST ESTIMATION
dc.subject
ROBUST REGRESSION
dc.subject
SEMI–PARAMETRIC ESTIMATORS
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust estimation in partially linear regression models with monotonicity constraints
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-09T20:15:25Z
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Londres
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Valdora, Marina Silvia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Vena, Pablo Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.journal.title
Communications In Statistics-simulation And Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1691732
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/03610918.2019.1691732
Archivos asociados