Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez, Daniela Andrea  
dc.contributor.author
Valdora, Marina Silvia  
dc.contributor.author
Vena, Pablo Claudio  
dc.date.available
2021-10-07T17:48:38Z  
dc.date.issued
2019-11  
dc.identifier.citation
Rodriguez, Daniela Andrea; Valdora, Marina Silvia; Vena, Pablo Claudio; Robust estimation in partially linear regression models with monotonicity constraints; Taylor & Francis; Communications In Statistics-simulation And Computation; 11-2019; 1-14  
dc.identifier.issn
0361-0918  
dc.identifier.uri
http://hdl.handle.net/11336/143181  
dc.description.abstract
Partially linear models are important tools in statistical modelling, combining the flexibility of non–parametric models and the simple interpretation of linear models. Monotonicity constraints appear naturally in certain problems when the response is known to increase with one of the covariates. Estimation methods for partially linear models with monotonicity constraints have been proposed in recent years. These methods have a good performance when all the observations follow the assumed model. However, if a small proportion of atypical observations is present in the sample, these estimators become unreliable. A robust estimation method for these models is proposed and applied to two real data sets. A Monte Carlo simulation study is performed, in which the proposed estimators are compared to existing ones in different situations, both with clean and contaminated samples.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ISOTONIC REGRESSION  
dc.subject
PARTIALLY LINEAR MODELS  
dc.subject
ROBUST ESTIMATION  
dc.subject
ROBUST REGRESSION  
dc.subject
SEMI–PARAMETRIC ESTIMATORS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust estimation in partially linear regression models with monotonicity constraints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-09T20:15:25Z  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Valdora, Marina Silvia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Vena, Pablo Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Communications In Statistics-simulation And Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1691732  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/03610918.2019.1691732