Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust estimation in partially linear regression models with monotonicity constraints

Rodriguez, Daniela AndreaIcon ; Valdora, Marina SilviaIcon ; Vena, Pablo ClaudioIcon
Fecha de publicación: 11/2019
Editorial: Taylor & Francis
Revista: Communications In Statistics-simulation And Computation
ISSN: 0361-0918
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Partially linear models are important tools in statistical modelling, combining the flexibility of non–parametric models and the simple interpretation of linear models. Monotonicity constraints appear naturally in certain problems when the response is known to increase with one of the covariates. Estimation methods for partially linear models with monotonicity constraints have been proposed in recent years. These methods have a good performance when all the observations follow the assumed model. However, if a small proportion of atypical observations is present in the sample, these estimators become unreliable. A robust estimation method for these models is proposed and applied to two real data sets. A Monte Carlo simulation study is performed, in which the proposed estimators are compared to existing ones in different situations, both with clean and contaminated samples.
Palabras clave: ISOTONIC REGRESSION , PARTIALLY LINEAR MODELS , ROBUST ESTIMATION , ROBUST REGRESSION , SEMI–PARAMETRIC ESTIMATORS
Ver el registro completo
 
Archivos asociados
Tamaño: 465.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143181
URL: https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1691732
DOI: http://dx.doi.org/10.1080/03610918.2019.1691732
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Rodriguez, Daniela Andrea; Valdora, Marina Silvia; Vena, Pablo Claudio; Robust estimation in partially linear regression models with monotonicity constraints; Taylor & Francis; Communications In Statistics-simulation And Computation; 11-2019; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES