Mostrar el registro sencillo del ítem
dc.contributor.author
Otero, Federico

dc.contributor.author
Araneo, Diego Christian

dc.date.available
2021-09-30T17:31:24Z
dc.date.issued
2020-06
dc.identifier.citation
Otero, Federico; Araneo, Diego Christian; Zonda wind classification using machine learning algorithms; John Wiley & Sons Ltd; International Journal of Climatology; 41; S1; 6-2020; 342-353
dc.identifier.issn
0899-8418
dc.identifier.uri
http://hdl.handle.net/11336/142125
dc.description.abstract
Zonda wind is a typical downslope windstorm over the eastern slopes of Central Andes, in Argentina, which produces extremely warm and dry conditions creating substantial socioeconomic impacts. To achieve the Zonda wind classification, objective methods based on supervised machine learning (ML) algorithms are used. ML training and supervision is based on the subjective Zonda wind classification assessing the total hourly data that correspond to Zonda wind observations for three surface stations longtime series. ML algorithms includes; the linear discriminant analysis (LD), linear support vector machine (SVM), k nearest neighbours (k-NN), logistic regression (LR) and classification trees. Metrics obtained from the confusion matrix are used to compare the models' skills in class separation. Considering event-based statistics, the obtained probability of detection values locate all models above 85% with a probability of false detection lower than 0.523% and a missing ratio below 15%. From an alarm-based perspective, algorithms show values below 11.42% in false alarm rate, lower than 0.7% in missing alarm ratio and higher than 88.85% in correct alarm ratio. The false negative rate occurs mostly from August to December, where the onset time of the events presents greater difficulty in the classification than the offset, while the false alarm increases in June and October months. Models skills reveal that k-NN, SVM and LR are better discriminators than LD and classification tree. The high efficiency of these models indicates that ML classification models could be used for the phenomenon diagnosis.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIAGNOSIS MODELS
dc.subject
DOWNSLOPE WINDSTORM
dc.subject
MACHINE LEARNING
dc.subject
ZONDA CLASSIFICATION
dc.subject.classification
Meteorología y Ciencias Atmosféricas

dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Zonda wind classification using machine learning algorithms
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-06T19:56:06Z
dc.journal.volume
41
dc.journal.number
S1
dc.journal.pagination
342-353
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Otero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
dc.description.fil
Fil: Araneo, Diego Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
dc.journal.title
International Journal of Climatology

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/joc.6688
Archivos asociados