Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Zonda wind classification using machine learning algorithms

Otero, FedericoIcon ; Araneo, Diego ChristianIcon
Fecha de publicación: 06/2020
Editorial: John Wiley & Sons Ltd
Revista: International Journal of Climatology
ISSN: 0899-8418
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Zonda wind is a typical downslope windstorm over the eastern slopes of Central Andes, in Argentina, which produces extremely warm and dry conditions creating substantial socioeconomic impacts. To achieve the Zonda wind classification, objective methods based on supervised machine learning (ML) algorithms are used. ML training and supervision is based on the subjective Zonda wind classification assessing the total hourly data that correspond to Zonda wind observations for three surface stations longtime series. ML algorithms includes; the linear discriminant analysis (LD), linear support vector machine (SVM), k nearest neighbours (k-NN), logistic regression (LR) and classification trees. Metrics obtained from the confusion matrix are used to compare the models' skills in class separation. Considering event-based statistics, the obtained probability of detection values locate all models above 85% with a probability of false detection lower than 0.523% and a missing ratio below 15%. From an alarm-based perspective, algorithms show values below 11.42% in false alarm rate, lower than 0.7% in missing alarm ratio and higher than 88.85% in correct alarm ratio. The false negative rate occurs mostly from August to December, where the onset time of the events presents greater difficulty in the classification than the offset, while the false alarm increases in June and October months. Models skills reveal that k-NN, SVM and LR are better discriminators than LD and classification tree. The high efficiency of these models indicates that ML classification models could be used for the phenomenon diagnosis.
Palabras clave: DIAGNOSIS MODELS , DOWNSLOPE WINDSTORM , MACHINE LEARNING , ZONDA CLASSIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 12.34Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/142125
DOI: http://dx.doi.org/10.1002/joc.6688
Colecciones
Articulos(IANIGLA)
Articulos de INST. ARG. DE NIVOLOGIA, GLACIOLOGIA Y CS. AMBIENT
Citación
Otero, Federico; Araneo, Diego Christian; Zonda wind classification using machine learning algorithms; John Wiley & Sons Ltd; International Journal of Climatology; 41; S1; 6-2020; 342-353
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES