Mostrar el registro sencillo del ítem
dc.contributor.author
Marchetti, Alejandro Gabriel
dc.contributor.author
de Avila Ferreira, T.
dc.contributor.author
Costello, Sergio Gustavo
dc.contributor.author
Bonvin, Dominique
dc.date.available
2021-09-29T18:34:50Z
dc.date.issued
2020-02
dc.identifier.citation
Marchetti, Alejandro Gabriel; de Avila Ferreira, T.; Costello, Sergio Gustavo; Bonvin, Dominique; Modifier Adaptation as a Feedback Control Scheme; American Chemical Society; Industrial & Engineering Chemical Research; 59; 6; 2-2020; 2261-2274
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/141921
dc.description.abstract
As a real-time optimization technique, modifier adaptation (MA) has gained much significance in recent years. This is mainly due to the fact that MA can deal explicitly with structural plant-model mismatch and unknown disturbances. MA is an iterative technique that is ideally suited to real-life applications. Its two main features are the way measurements are used to correct the model and the role played by the model in actually computing the next inputs. This paper analyzes these two features and shows that, although MA computes the next inputs via numerical optimization, it can be viewed as a feedback control scheme, that is, optimization implements tracking of the plant Karush-Kuhn-Tucker (KKT) conditions. As a result, the role of the model is downplayed to the point that model accuracy is not an important issue. The key issues are gradient estimation and model adequacy, the latter requiring that the model possesses the correct curvature of the cost function at the plant optimum. The main role of optimization is to identify the proper set of controlled variables (the active constraints and reduced gradients) as these might change with the operating point and disturbances. Thanks to this reduced requirement on model accuracy, MA is ideally suited to drive real-life processes to optimality. This is illustrated through two experimental systems with very different optimization features, namely, a commercial fuel-cell system and an experimental kite setup for harnessing wind energy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
REAL-TIME OPTIMIZATION
dc.subject
PLANT-MODEL MISMATCH
dc.subject
CONSTRAINT ADAPTATION
dc.subject
MODIFIER ADAPTATION
dc.subject
MODEL ACCURACY
dc.subject
MODEL ADEQUACY
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Modifier Adaptation as a Feedback Control Scheme
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-05T16:39:47Z
dc.journal.volume
59
dc.journal.number
6
dc.journal.pagination
2261-2274
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington D. C.
dc.description.fil
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: de Avila Ferreira, T.. Ecole Polytechnique Federale de Lausanne; Francia
dc.description.fil
Fil: Costello, Sergio Gustavo. Ecole Polytechnique Federale de Lausanne; Francia
dc.description.fil
Fil: Bonvin, Dominique. Ecole Polytechnique Federale de Lausanne; Francia
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b04501
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.iecr.9b04501
Archivos asociados