Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez, Juan Cruz  
dc.contributor.author
Merino, Gabriela Alejandra  
dc.contributor.author
Llera, Andrea Sabina  
dc.contributor.author
Fernandez, Elmer Andres  
dc.date.available
2021-09-27T19:24:35Z  
dc.date.issued
2019-03-27  
dc.identifier.citation
Rodriguez, Juan Cruz; Merino, Gabriela Alejandra; Llera, Andrea Sabina; Fernandez, Elmer Andres; Massive integrative gene set analysis enables functional characterization of breast cancer subtypes; Academic Press Inc Elsevier Science; Journal Of Biomedical Informatics; 93; 103157; 27-3-2019; 1-8  
dc.identifier.issn
1532-0464  
dc.identifier.uri
http://hdl.handle.net/11336/141652  
dc.description.abstract
The availability of large-scale repositories and integrated cancer genome efforts have created unprecedented opportunities to study and describe cancer biology. In this sense, the aim of translational researchers is the integration of multiple omics data to achieve a better identification of homogeneous subgroups of patients in order to develop adequate diagnostic and treatment strategies from the personalized medicine perspective. So far, existing integrative methods have grouped together omics data information, leaving out individual omics data phenotypic interpretation.Here, we present the Massive and Integrative Gene Set Analysis (MIGSA) R package. This tool can analyze several high throughput experiments in a comprehensive way through a functional analysis strategy, relating a phenotype to its biological function counterpart defined by means of gene sets. By simultaneously querying different multiple omics data from the same or different groups of patients, common and specific functional patterns for each studied phenotype can be obtained. The usefulness of MIGSA was demonstrated by applying the package to functionally characterize the intrinsic breast cancer PAM50 subtypes. For each subtype, specific functional transcriptomic profiles and gene sets enriched by transcriptomic and proteomic data were identified. To achieve this, transcriptomic and proteomic data from 28 datasets were analyzed using MIGSA. As a result, enriched gene sets and important genes were consistently found as related to a specific subtype across experiments or data types and thus can be used as molecular signature biomarkers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIG OMICS DATA  
dc.subject
MULTIPLE OMICS  
dc.subject
BIOLOGICAL INSIGHT  
dc.subject
KNOWLEDGE DISCOVERY  
dc.subject
FUNCTIONAL ANALYSIS  
dc.subject
BREAST CANCER  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Massive integrative gene set analysis enables functional characterization of breast cancer subtypes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-20T17:50:53Z  
dc.journal.volume
93  
dc.journal.number
103157  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rodriguez, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Merino, Gabriela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; Argentina. Universidad Nacional de Córdoba; Argentina. Universidad Nacional de Entre Ríos; Argentina  
dc.description.fil
Fil: Llera, Andrea Sabina. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Fernandez, Elmer Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; Argentina. Facultad de Ciencias Exactas Físicas y Naturales . Universidad Nacional de Córdoba; Argentina  
dc.journal.title
Journal Of Biomedical Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1532046419300759  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jbi.2019.103157