Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Massive integrative gene set analysis enables functional characterization of breast cancer subtypes

Rodriguez, Juan CruzIcon ; Merino, Gabriela AlejandraIcon ; Llera, Andrea SabinaIcon ; Fernandez, Elmer AndresIcon
Fecha de publicación: 27/03/2019
Editorial: Academic Press Inc Elsevier Science
Revista: Journal Of Biomedical Informatics
ISSN: 1532-0464
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The availability of large-scale repositories and integrated cancer genome efforts have created unprecedented opportunities to study and describe cancer biology. In this sense, the aim of translational researchers is the integration of multiple omics data to achieve a better identification of homogeneous subgroups of patients in order to develop adequate diagnostic and treatment strategies from the personalized medicine perspective. So far, existing integrative methods have grouped together omics data information, leaving out individual omics data phenotypic interpretation.Here, we present the Massive and Integrative Gene Set Analysis (MIGSA) R package. This tool can analyze several high throughput experiments in a comprehensive way through a functional analysis strategy, relating a phenotype to its biological function counterpart defined by means of gene sets. By simultaneously querying different multiple omics data from the same or different groups of patients, common and specific functional patterns for each studied phenotype can be obtained. The usefulness of MIGSA was demonstrated by applying the package to functionally characterize the intrinsic breast cancer PAM50 subtypes. For each subtype, specific functional transcriptomic profiles and gene sets enriched by transcriptomic and proteomic data were identified. To achieve this, transcriptomic and proteomic data from 28 datasets were analyzed using MIGSA. As a result, enriched gene sets and important genes were consistently found as related to a specific subtype across experiments or data types and thus can be used as molecular signature biomarkers.
Palabras clave: BIG OMICS DATA , MULTIPLE OMICS , BIOLOGICAL INSIGHT , KNOWLEDGE DISCOVERY , FUNCTIONAL ANALYSIS , BREAST CANCER
Ver el registro completo
 
Archivos asociados
Tamaño: 1.376Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/141652
URL: https://linkinghub.elsevier.com/retrieve/pii/S1532046419300759
DOI: https://doi.org/10.1016/j.jbi.2019.103157
Colecciones
Articulos(CIDIE)
Articulos de CENTRO DE INV. Y DESARROLLO EN INMUNOLOGIA Y ENFERMEDADES INFECCIOSAS
Citación
Rodriguez, Juan Cruz; Merino, Gabriela Alejandra; Llera, Andrea Sabina; Fernandez, Elmer Andres; Massive integrative gene set analysis enables functional characterization of breast cancer subtypes; Academic Press Inc Elsevier Science; Journal Of Biomedical Informatics; 93; 103157; 27-3-2019; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES