Mostrar el registro sencillo del ítem
dc.contributor.author
Díaz Caro, Alejandro
dc.contributor.author
Malherbe, Octavio
dc.date.available
2021-09-27T18:00:23Z
dc.date.issued
2020-10
dc.identifier.citation
Díaz Caro, Alejandro; Malherbe, Octavio; A categorical construction for the computational definition of vector spaces; Springer; Applied Categorical Structures; 28; 5; 10-2020; 807-844
dc.identifier.issn
0927-2852
dc.identifier.uri
http://hdl.handle.net/11336/141616
dc.description.abstract
Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ALGEBRAIC LAMBDA-CALCULUS
dc.subject
CATEGORICAL SEMANTICS
dc.subject
QUANTUM COMPUTING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A categorical construction for the computational definition of vector spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:28:32Z
dc.journal.volume
28
dc.journal.number
5
dc.journal.pagination
807-844
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Malherbe, Octavio. Universidad de la Republica. Facultad de Ingeniería; Uruguay
dc.journal.title
Applied Categorical Structures
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10485-020-09598-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10485-020-09598-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.01305
Archivos asociados