Artículo
A categorical construction for the computational definition of vector spaces
Fecha de publicación:
10/2020
Editorial:
Springer
Revista:
Applied Categorical Structures
ISSN:
0927-2852
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.
Palabras clave:
ALGEBRAIC LAMBDA-CALCULUS
,
CATEGORICAL SEMANTICS
,
QUANTUM COMPUTING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Díaz Caro, Alejandro; Malherbe, Octavio; A categorical construction for the computational definition of vector spaces; Springer; Applied Categorical Structures; 28; 5; 10-2020; 807-844
Compartir
Altmétricas