Mostrar el registro sencillo del ítem

dc.contributor.author
Paredes, José Nicolás  
dc.contributor.author
Simari, Gerardo  
dc.contributor.author
Martinez, Maria Vanina  
dc.contributor.author
Falappa, Marcelo Alejandro  
dc.date.available
2021-09-24T13:23:50Z  
dc.date.issued
2021-12  
dc.identifier.citation
Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; Detecting malicious behavior in social platforms via hybrid knowledge and data driven systems; Elsevier Science; Future Generation Computer Systems; 125; 12-2021; 232-246  
dc.identifier.issn
0167-739X  
dc.identifier.uri
http://hdl.handle.net/11336/141460  
dc.description.abstract
Among the wide variety of malicious behavior commonly observed in modern social platforms, one of the most notorious is the diffusion of fake news, given its potential to influence the opinions of millions of people who can be voters, consumers, or simply citizens going about their daily lives. In this paper, we implement and carry out an empirical evaluation of a version of the recently-proposed NetDER architecture for hybrid AI decision-support systems with the capability of leveraging the availability of machine learning modules, logical reasoning about unknown objects, and forecasts based on diffusion processes. NetDER is a general architecture for reasoning about different kinds of malicious behavior such as dissemination of fake news, hate speech, and malware, detection of botnet operations, prevention of cyber attacks including those targeting software products or blockchain transactions, among others. Here, we focus on the case of fake news dissemination on social platforms by three different kinds of users: non-malicious, malicious, and botnet members. In particular, we focus on three tasks: (i) determining who is responsible for posting a fake news article, (ii) detecting malicious users, and (iii) detecting which users belong to a botnet designed to disseminate fake news. Given the difficulty of obtaining adequate data with ground truth, we also develop a testbed that combines real-world fake news datasets with synthetically generated networks of users and fully-detailed traces of their behavior throughout a series of time points. We designed our testbed to be customizable for different problem sizes and settings, and make its code publicly available to be used in similar evaluation efforts. Finally, we report on the results of a thorough experimental evaluation of three variants of our model and six environmental settings over the three tasks. Our results clearly show the effects that the quality of knowledge engineering tasks, the quality of the underlying machine learning classifier used to detect fake news, and the specific environmental conditions have on smart policing efforts in social platforms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BOTNETS  
dc.subject
DECISION SUPPORT SYSTEMS  
dc.subject
FAKE NEWS  
dc.subject
HUMAN-IN-THE-LOOP COMPUTING  
dc.subject
INFORMATION/MISINFORMATION DIFFUSION  
dc.subject
MALICIOUS BEHAVIOR  
dc.subject
SOCIAL DATA  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Detecting malicious behavior in social platforms via hybrid knowledge and data driven systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-27T14:59:08Z  
dc.journal.volume
125  
dc.journal.pagination
232-246  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Paredes, José Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Future Generation Computer Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167739X21002284  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.future.2021.06.033