Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detecting malicious behavior in social platforms via hybrid knowledge and data driven systems

Paredes, José NicolásIcon ; Simari, GerardoIcon ; Martinez, Maria VaninaIcon ; Falappa, Marcelo AlejandroIcon
Fecha de publicación: 12/2021
Editorial: Elsevier Science
Revista: Future Generation Computer Systems
ISSN: 0167-739X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Among the wide variety of malicious behavior commonly observed in modern social platforms, one of the most notorious is the diffusion of fake news, given its potential to influence the opinions of millions of people who can be voters, consumers, or simply citizens going about their daily lives. In this paper, we implement and carry out an empirical evaluation of a version of the recently-proposed NetDER architecture for hybrid AI decision-support systems with the capability of leveraging the availability of machine learning modules, logical reasoning about unknown objects, and forecasts based on diffusion processes. NetDER is a general architecture for reasoning about different kinds of malicious behavior such as dissemination of fake news, hate speech, and malware, detection of botnet operations, prevention of cyber attacks including those targeting software products or blockchain transactions, among others. Here, we focus on the case of fake news dissemination on social platforms by three different kinds of users: non-malicious, malicious, and botnet members. In particular, we focus on three tasks: (i) determining who is responsible for posting a fake news article, (ii) detecting malicious users, and (iii) detecting which users belong to a botnet designed to disseminate fake news. Given the difficulty of obtaining adequate data with ground truth, we also develop a testbed that combines real-world fake news datasets with synthetically generated networks of users and fully-detailed traces of their behavior throughout a series of time points. We designed our testbed to be customizable for different problem sizes and settings, and make its code publicly available to be used in similar evaluation efforts. Finally, we report on the results of a thorough experimental evaluation of three variants of our model and six environmental settings over the three tasks. Our results clearly show the effects that the quality of knowledge engineering tasks, the quality of the underlying machine learning classifier used to detect fake news, and the specific environmental conditions have on smart policing efforts in social platforms.
Palabras clave: BOTNETS , DECISION SUPPORT SYSTEMS , FAKE NEWS , HUMAN-IN-THE-LOOP COMPUTING , INFORMATION/MISINFORMATION DIFFUSION , MALICIOUS BEHAVIOR , SOCIAL DATA
Ver el registro completo
 
Archivos asociados
Tamaño: 1.845Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/141460
URL: https://www.sciencedirect.com/science/article/pii/S0167739X21002284
DOI: http://dx.doi.org/10.1016/j.future.2021.06.033
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; Detecting malicious behavior in social platforms via hybrid knowledge and data driven systems; Elsevier Science; Future Generation Computer Systems; 125; 12-2021; 232-246
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES