Mostrar el registro sencillo del ítem

dc.contributor.author
Alonso, Diego Gabriel  
dc.contributor.author
Teyseyre, Alfredo Raul  
dc.contributor.author
Soria, Alvaro  
dc.contributor.author
Berdun, Luis Sebastian  
dc.date.available
2021-09-23T14:20:14Z  
dc.date.issued
2020-04-24  
dc.identifier.citation
Alonso, Diego Gabriel; Teyseyre, Alfredo Raul; Soria, Alvaro; Berdun, Luis Sebastian; Hand gesture recognition in real world scenarios using approximate string matching; Springer; Multimedia Tools And Applications; 24-4-2020; 1-22  
dc.identifier.issn
1380-7501  
dc.identifier.uri
http://hdl.handle.net/11336/141342  
dc.description.abstract
New interaction paradigms combined with emerging technologies have produced the creation of diverse Natural User Interface (NUI) devices in the market. These devices enable the recognition of body gestures allowing users to interact with applications in a more direct, expressive, and intuitive way. In particular, the Leap Motion Controller (LMC) device has been receiving plenty of attention from NUI application developers because it allows them to address limitations on gestures made with hands. Although this device is able to recognize the position of several parts of the hands, developers are still left with the difficulttask of recognizing gestures. For this reason, several authors approached this problem using machine learning techniques. We propose a classifier based on Approximate String Matching (ASM). In short, we encode the trajectories of the hand joints as character sequences using the K-means algorithm and then we analyze these sequences with ASM. It should benoted that, when using the K-means algorithm, we select the number of clusters for each part of the hands by considering the Silhouette Coefficient. Furthermore, we define other important factors to take into account for improving the recognition accuracy. For the experiments, we generated a balanced dataset including different types of gestures and afterwards we performed a cross-validation scheme. Experimental results showed the robustness of the approach in terms of recognizing different types of gestures, time spent, and allocated memory. Besides, our approach achieved higher performance rates than well-known algorithmsproposed in the current state-of-art for gesture recognition.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Natural user interfaces  
dc.subject
Hand gesture recognition  
dc.subject
Machine learning ·  
dc.subject
Approximate string matching  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hand gesture recognition in real world scenarios using approximate string matching  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-27T19:55:05Z  
dc.journal.pagination
1-22  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Alonso, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Teyseyre, Alfredo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Soria, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Multimedia Tools And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11042-020-08913-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11042-020-08913-7