Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hand gesture recognition in real world scenarios using approximate string matching

Alonso, Diego GabrielIcon ; Teyseyre, Alfredo RaulIcon ; Soria, AlvaroIcon ; Berdun, Luis SebastianIcon
Fecha de publicación: 24/04/2020
Editorial: Springer
Revista: Multimedia Tools And Applications
ISSN: 1380-7501
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

New interaction paradigms combined with emerging technologies have produced the creation of diverse Natural User Interface (NUI) devices in the market. These devices enable the recognition of body gestures allowing users to interact with applications in a more direct, expressive, and intuitive way. In particular, the Leap Motion Controller (LMC) device has been receiving plenty of attention from NUI application developers because it allows them to address limitations on gestures made with hands. Although this device is able to recognize the position of several parts of the hands, developers are still left with the difficulttask of recognizing gestures. For this reason, several authors approached this problem using machine learning techniques. We propose a classifier based on Approximate String Matching (ASM). In short, we encode the trajectories of the hand joints as character sequences using the K-means algorithm and then we analyze these sequences with ASM. It should benoted that, when using the K-means algorithm, we select the number of clusters for each part of the hands by considering the Silhouette Coefficient. Furthermore, we define other important factors to take into account for improving the recognition accuracy. For the experiments, we generated a balanced dataset including different types of gestures and afterwards we performed a cross-validation scheme. Experimental results showed the robustness of the approach in terms of recognizing different types of gestures, time spent, and allocated memory. Besides, our approach achieved higher performance rates than well-known algorithmsproposed in the current state-of-art for gesture recognition.
Palabras clave: Natural user interfaces , Hand gesture recognition , Machine learning · , Approximate string matching
Ver el registro completo
 
Archivos asociados
Tamaño: 922.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/141342
URL: http://link.springer.com/10.1007/s11042-020-08913-7
DOI: http://dx.doi.org/10.1007/s11042-020-08913-7
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Alonso, Diego Gabriel; Teyseyre, Alfredo Raul; Soria, Alvaro; Berdun, Luis Sebastian; Hand gesture recognition in real world scenarios using approximate string matching; Springer; Multimedia Tools And Applications; 24-4-2020; 1-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES